Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3676435
1.
1. J. K. Carson, S. J. Lovatt, D. J. Tanner, and A. C. Cleland, Int. J. Heat Mass Transfer 48, 2150 (2005).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.12.032
2.
2. M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed. (Springer, 1999).
3.
3. W. van Antwerpen, C. G. du Toit, and P. G. Rousseau, Nuclear Engineering and Design 240, 1803 (2010).
http://dx.doi.org/10.1016/j.nucengdes.2010.03.009
4.
4. C. Argento and D. Bouvard, Int. J. Heat Mass Transfer 39, 1343 (1996).
http://dx.doi.org/10.1016/0017-9310(95)00257-X
5.
5. W. L. Vargas and J. J. McCarthy, AIChE Journal 47, 1052 (2001).
http://dx.doi.org/10.1002/aic.690470511
6.
6. M. Wang and N. Pan, Int. J. Heat Mass Transfer 51, 1325 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.11.031
7.
7. W. Woodside and J. H. Messmer, J. Appl. Phys. 32, 1688 (1961).
http://dx.doi.org/10.1063/1.1728419
8.
8. I. H. Tavman, Int. Comm. Heat Mass Transfer 23, 169 (1996).
http://dx.doi.org/10.1016/0735-1933(96)00003-6
9.
9. M. Elsari and R. Hughes, Applied Thermal Engineering 22, 1969 (2002).
http://dx.doi.org/10.1016/S1359-4311(02)00117-5
10.
10. L. Miettinen, P. Kekäläinen, J. Merikoski, M. Myllys, and J. Timonen, Int. J. Thermophys. 29, 1422 (2008).
http://dx.doi.org/10.1007/s10765-008-0498-6
11.
11. L. Miettinen, P. Kekäläinen, J. Merikoski, and J. Timonen, Int. J. Thermophys. 30, 1902 (2009).
http://dx.doi.org/10.1007/s10765-009-0690-3
12.
12. C. K. Chan and C. L. Tien, J. Heat Transfer 95, 302 (1973).
http://dx.doi.org/10.1115/1.3450056
13.
13. G. N. Ramanchandran and A. V. Lakshminarayanan, in Proceedings of the National Academy of Sciences, Vol. 68 (1971) pp. 22362240.
14.
14. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
15.
15. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice-Hall, Inc., 2002) pp. 617626.
16.
16. D. Wolf-Gladrow, J. Stat. Phys. 79, 1023 (1995).
http://dx.doi.org/10.1007/BF02181215
17.
17. M. Wang, J. He, J. Yu, and N. Pan, Int. J. Thermal Sciences 46, 848 (2007).
http://dx.doi.org/10.1016/j.ijthermalsci.2006.11.006
18.
18. Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
http://dx.doi.org/10.1063/1.1728579
19.
19. R. Landauer, J. Appl. Phys. 23, 779 (1952).
http://dx.doi.org/10.1063/1.1702301
20.
20. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).
http://dx.doi.org/10.1103/RevModPhys.45.574
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3676435
Loading
/content/aip/journal/adva/2/1/10.1063/1.3676435
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3676435
2012-01-03
2016-12-03

Abstract

The in-plane thermal conductivity of porous sintered bronze plates was studied both experimentally and numerically. We developed and validated an experimental setup, where the sample was placed in vacuum and heated while its time-dependent temperature field was measured with an infrared camera. The porosity and detailed three-dimensional structure of the samples were determined by X-raymicrotomography. Lattice-Boltzmann simulations of thermal conductivity in the tomographic reconstructions of the samples were used to correct the contact area between bronze particles as determined by image analysis from the tomographic reconstructions. Small openings in the apparent contacts could not be detected with the imaging resolution used, and they caused an apparent thermal contact resistance between particles. With this correction included, the behavior of the measuredthermal conductivity was successfully explained by an analytical expression, originally derived for regular structures, which involves three structural parameters of the porous structures. There was no simple relationship between heat conductivity and porosity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3676435.html;jsessionid=ZkhPtaML1fq1OCLC0IK2rz8d.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3676435&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3676435&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3676435'
Right1,Right2,Right3,