Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. K. Geim, and K. S. Novoselov, Nat Mater 6, 183 (2007).
2. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat Nanotechnol 3, 491 (2008).
3. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
4. N. Ferralis, R. Maboudian, and C. Carraro, Phys Rev Lett 101, 156801 (2008).
5. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, Nano Lett 10, 490 (2010).
6. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, Acs Nano 2, 2301 (2008).
7. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
8. W. Z. Bao, F. Miao, Z. Chen, H. Zhang, W. Y. Jang, C. Dames, and C. N. Lau, Nat Nanotechnol 4, 562 (2009).
9. Y. Li, X. W. Jiang, Z. F. Liu, and Z. R. Liu, Nano Res 3, 545 (2010).
10. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, Phys Rev Lett 105, 266601 (2010).
11. V. M. Pereira, and A. H. C. Neto, Phys Rev Lett 103, 046801 (2009).
12. M. A. Zhou, Y. H. Lu, C. Zhang, and Y. P. Feng, Appl Phys Lett 97, 103109 (2010).
13. M. A. Zhou, A. H. Zhang, Z. X. Dai, Y. P. Feng, and C. Zhang, J Phys Chem C 114, 16541 (2010).
14. V. M. Pereira, A. H. C. Neto, and N. M. R. Peres, Phys Rev B 80, 045401 (2009).
15. L. Sun, Q. X. Li, H. Ren, H. B. Su, Q. W. Shi, and J. L. Yang, J Chem Phys 129, 074704 (2008).
16. Y. Lu, and J. Guo, Nano Res 3, 189 (2010).
17. M. Poetschke, C. G. Rocha, L. E. F. F. Torres, S. Roche, and G. Cuniberti, Phys Rev B 81, 193404 (2010).
18. R. Rasuli, H. Rafii-Tabar, and A. I. Zad, Phys Rev B 81, 125409 (2010).
19. M. Z. Hossain, Appl Phys Lett 96, 143118 (2010).
20. B. Soodchomshom, Physica B 406, 614 (2011).
21. X. H. Peng, and S. Velasquez, Appl Phys Lett 98, 023112 (2011).
22. F. Zhai, and L. Yang, Appl Phys Lett 98, 062101 (2011).
23. F. Zhai, X. F. Zhao, K. Chang, and H. Q. Xu, Phys Rev B 82, 115442 (2010).
24. Y. Lu, and J. Guo, Appl Phys Lett 97, 073105 (2010).
25. M. Farjam, and H. Rafii-Tabar, Phys Rev B 80, 167401 (2009).
26. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys Rev B 81, 035411 (2010).
27. M. Y. Huang, T. A. Pascal, H. Kim, W. A. Goddard, and J. R. Greer, Nano Lett 11, 1241 (2011).
28. C. P. Chang, B. R. Wu, R. B. Chen, and M. F. Lin, J Appl Phys 101, 063506 (2007).
29. K. Alam, Ieee T Nanotechnol 8, 528 (2009).
30. J. H. Kang, Y. He, J. Y. Zhang, X. X. Yu, X. M. Guan, and Z. P. Yu, Appl Phys Lett 96, 252105 (2010).
31. M. Topsakal, V. M. K. Bagci, and S. Ciraci, Phys Rev B 81, 205437 (2010).
32. Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan, Phys Rev Lett 100, 206802 (2008).
33. G. Kresse, and J. Furthmüller, Comp Mater Sci 6, 15 (1996).
34. See Supplementary Material Document No. for the test of the structure optimization and the discussion of the conductance peak at the Fermi level. [Supplementary Material]
35. J. Taylor, H. Guo, and J. Wang, Phys Rev B 63, 245407 (2001).
36. M. Brandbyge, J. Mozos, eacute, Luis, Ordej, oacute, P. n, J. Taylor, and K. Stokbro, Phys Rev B 65, 165401 (2002).
37. Y. W. Son, M. L. Cohen, and S. G. Louie, Phys Rev Lett 97, 216803 (2006).
38. D. Gunlycke, D. A. Areshkin, J. W. Li, J. W. Mintmire, and C. T. White, Nano Lett 7, 3608 (2007).

Data & Media loading...


Article metrics loading...



The charge transport properties of zigzag graphenenanoribbons (ZGNRs) under uniaxial and shear strains are theoretically studied. Although all strained ZGNRs have similar metallic band structures, they show four types of transport behavior under bias voltages that depend on the type of strain and the mirror symmetry of the ZGNR. Under an applied uniaxial strain, the current of symmetric ZGNRs is consistently small, while for asymmetric ZGNRs it is large. In contrast, the current increases with increasing shear strain for symmetric ZGNRs while it decreases for asymmetric ZGNRs. The current properties merge when the shear strain exceeds a critical value, and the two systems then show similar behavior. Our results suggest that strained ZGNRs with an appropriate applied shear are ideal conducting wires.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd