Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3676615
1.
1. A. K. Geim, and K. S. Novoselov, Nat Mater 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat Nanotechnol 3, 491 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
3.
3. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
4.
4. N. Ferralis, R. Maboudian, and C. Carraro, Phys Rev Lett 101, 156801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.156801
5.
5. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, Nano Lett 10, 490 (2010).
http://dx.doi.org/10.1021/nl903272n
6.
6. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X. Shen, Acs Nano 2, 2301 (2008).
http://dx.doi.org/10.1021/nn800459e
7.
7. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
8.
8. W. Z. Bao, F. Miao, Z. Chen, H. Zhang, W. Y. Jang, C. Dames, and C. N. Lau, Nat Nanotechnol 4, 562 (2009).
http://dx.doi.org/10.1038/nnano.2009.191
9.
9. Y. Li, X. W. Jiang, Z. F. Liu, and Z. R. Liu, Nano Res 3, 545 (2010).
http://dx.doi.org/10.1007/s12274-010-0015-7
10.
10. E. V. Castro, H. Ochoa, M. I. Katsnelson, R. V. Gorbachev, D. C. Elias, K. S. Novoselov, A. K. Geim, and F. Guinea, Phys Rev Lett 105, 266601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266601
11.
11. V. M. Pereira, and A. H. C. Neto, Phys Rev Lett 103, 046801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.046801
12.
12. M. A. Zhou, Y. H. Lu, C. Zhang, and Y. P. Feng, Appl Phys Lett 97, 103109 (2010).
http://dx.doi.org/10.1063/1.3486682
13.
13. M. A. Zhou, A. H. Zhang, Z. X. Dai, Y. P. Feng, and C. Zhang, J Phys Chem C 114, 16541 (2010).
http://dx.doi.org/10.1021/jp105368j
14.
14. V. M. Pereira, A. H. C. Neto, and N. M. R. Peres, Phys Rev B 80, 045401 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045401
15.
15. L. Sun, Q. X. Li, H. Ren, H. B. Su, Q. W. Shi, and J. L. Yang, J Chem Phys 129, 074704 (2008).
http://dx.doi.org/10.1063/1.2958285
16.
16. Y. Lu, and J. Guo, Nano Res 3, 189 (2010).
http://dx.doi.org/10.1007/s12274-010-1022-4
17.
17. M. Poetschke, C. G. Rocha, L. E. F. F. Torres, S. Roche, and G. Cuniberti, Phys Rev B 81, 193404 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.193404
18.
18. R. Rasuli, H. Rafii-Tabar, and A. I. Zad, Phys Rev B 81, 125409 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125409
19.
19. M. Z. Hossain, Appl Phys Lett 96, 143118 (2010).
http://dx.doi.org/10.1063/1.3387789
20.
20. B. Soodchomshom, Physica B 406, 614 (2011).
http://dx.doi.org/10.1016/j.physb.2010.11.055
21.
21. X. H. Peng, and S. Velasquez, Appl Phys Lett 98, 023112 (2011).
http://dx.doi.org/10.1063/1.3536481
22.
22. F. Zhai, and L. Yang, Appl Phys Lett 98, 062101 (2011).
http://dx.doi.org/10.1063/1.3552716
23.
23. F. Zhai, X. F. Zhao, K. Chang, and H. Q. Xu, Phys Rev B 82, 115442 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115442
24.
24. Y. Lu, and J. Guo, Appl Phys Lett 97, 073105 (2010).
http://dx.doi.org/10.1063/1.3479915
25.
25. M. Farjam, and H. Rafii-Tabar, Phys Rev B 80, 167401 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.167401
26.
26. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys Rev B 81, 035411 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035411
27.
27. M. Y. Huang, T. A. Pascal, H. Kim, W. A. Goddard, and J. R. Greer, Nano Lett 11, 1241 (2011).
http://dx.doi.org/10.1021/nl104227t
28.
28. C. P. Chang, B. R. Wu, R. B. Chen, and M. F. Lin, J Appl Phys 101, 063506 (2007).
http://dx.doi.org/10.1063/1.2710761
29.
29. K. Alam, Ieee T Nanotechnol 8, 528 (2009).
http://dx.doi.org/10.1109/TNANO.2008.2011811
30.
30. J. H. Kang, Y. He, J. Y. Zhang, X. X. Yu, X. M. Guan, and Z. P. Yu, Appl Phys Lett 96, 252105 (2010).
http://dx.doi.org/10.1063/1.3456533
31.
31. M. Topsakal, V. M. K. Bagci, and S. Ciraci, Phys Rev B 81, 205437 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205437
32.
32. Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan, Phys Rev Lett 100, 206802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206802
33.
33. G. Kresse, and J. Furthmüller, Comp Mater Sci 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
34.
34. See Supplementary Material Document No. http://dx.doi.org/10.1063/1.3676615 for the test of the structure optimization and the discussion of the conductance peak at the Fermi level. [Supplementary Material]
35.
35. J. Taylor, H. Guo, and J. Wang, Phys Rev B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
36.
36. M. Brandbyge, J. Mozos, eacute, Luis, Ordej, oacute, P. n, J. Taylor, and K. Stokbro, Phys Rev B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
37.
37. Y. W. Son, M. L. Cohen, and S. G. Louie, Phys Rev Lett 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
38.
38. D. Gunlycke, D. A. Areshkin, J. W. Li, J. W. Mintmire, and C. T. White, Nano Lett 7, 3608 (2007).
http://dx.doi.org/10.1021/nl0717917
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3676615
Loading
/content/aip/journal/adva/2/1/10.1063/1.3676615
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3676615
2012-01-03
2016-12-03

Abstract

The charge transport properties of zigzag graphenenanoribbons (ZGNRs) under uniaxial and shear strains are theoretically studied. Although all strained ZGNRs have similar metallic band structures, they show four types of transport behavior under bias voltages that depend on the type of strain and the mirror symmetry of the ZGNR. Under an applied uniaxial strain, the current of symmetric ZGNRs is consistently small, while for asymmetric ZGNRs it is large. In contrast, the current increases with increasing shear strain for symmetric ZGNRs while it decreases for asymmetric ZGNRs. The current properties merge when the shear strain exceeds a critical value, and the two systems then show similar behavior. Our results suggest that strained ZGNRs with an appropriate applied shear are ideal conducting wires.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3676615.html;jsessionid=3yoRrFBrqqaCk_x0rNJ59Ubq.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3676615&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3676615&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3676615'
Right1,Right2,Right3,