Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Vonmolnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
2. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
3. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today 9, 18 (2006).
4. H. Ohno, Science 281, 951 (1998).
5. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, and H. Koninuma, Science 291, 854 (2001).
6. S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004).
7. S. M. Koohpayeh, A. J. Williams, J. S. Abell, J. Lim, and E. Blackburn, J. Appl. Phys. 108, 073919 (2010).
8. K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and K. M. Krishnan, Phys. Rev. Lett. 94, 157204 (2005).
9. M. You, T. G. Kim, and Y. Sung, Cryst. Growth Des. 10, 983 (2010).
10. R. K. Singhal, A. Samariya, S. Kumar, Y. T. Xing, D. C. Jain, S. N. Dolia, U. P. Deshpande, T. Shripathi, and E. B. Saitovitch, J. Appl. Phys. 107, 113916 (2010).
11. L. C. J. Pereira, M. R. Nunes, O. C. Monteiro, and A. J. Silvestre, Appl. Phys. Lett. 93, 222502 (2008).
12. J. Chen, G-H. Lu, H. Cao, T. Wang, and Y. Xu, Appl. Phys. Lett. 93, 172504 (2008).
13. J. D. Bryan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, J. Am. Chem. Soc. 126, 11640 (2004).
14. Y. Ding, W. Q. Han, and L. H. Lewis, J. Appl. Phys. 102, 123902 (2007).
15. K. Melghit, and K. Bouziane, J. Alloys Compd. 453, 102 (2008).
16. X. W. Wang, X. P. Gao, G. R. Li, L. Gao, and T. Y. Yan, Appl. Phys. Lett. 91, 143102 (2007).
17. S. K. S. Patel, and N. S. Gajbhiye, Solid State Commun. 151, 1500 (2011).
18. A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, Angew. Chem. Int. Ed. 43, 2286 (2004).
19. U. Balachandran and N. G. Eror, J. Solid State Chem. 42, 276 (1982).
20. N. V. Minh, D. H. Long, N. T. Khoi, Y. Jung, S.-J. Kim, and I.-S. Yang, IEEE Transaction on nanotechnology 7, 177 (2008).
21. R. Yoshida, Y. Suzuki, and S. Yoshikawa, J. Solid State Chem. 178, 2179 (2005).
22. Z. Nemeth, K. Nomura, and Y. Ito, J. Phys. Chem. C 113, 20044 (2009).
23. S. B. Singh, M. V. Limaye, S. K. Date, S. Gokhale, and S. K. Kulkarni, Phys. Rev. B 80, 235421 (2009).
24. E. Erdem, R.-A. Eichel, C. Fetzer, I. Dézsi, S. Lauterbach, H.-J. Kleebe, and A. G. Balogh, J. Appl. Phys. 107, 054109 (2010).
25. S. Zhu, Y. Li, C. Fan, D. Zhang, W. Liu, Z. Sun, and S. Wei, Physica B 364, 199 (2005).
26. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
27. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
28. J. Chen, P. Rulis, L. Ouyang, S. Satpathy, and W. Y. Ching, Phys. Rev. B 74, 235207 (2006).
29. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
30. A. Kaminiski, S. D. Sarma, Phys. Rev. Lett. 88, 247202 (2002).
31. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).
32. G. Wang, Q. Wang, W. Lu, and J. Li, J. Phys. Chem. B 110, 22029 (2006).
33. J. Hays, A. Thurber, K. M. Reddy, A. Punnoose, M. H. Engelhard, J. Appl. Phys. 99, 08M123 (2006).
34. N. Serpone, J. Phys. Chem. B 110, 24287 (2006).
35. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Appl. Phys. Lett. 78, 1125 (2001).
36. G. Z. Xing, J. B. Yi, D. D. Wang, L. Liao, T. Yu, Z. X. Shen, C. H. A. Huan, T. C. Sum, J. Ding, and T. Wu, Phys. Rev. B 79, 174406 (2009).
37. L. Zhang, S. Ge, Y. Zuo, B. Zhang, and L. Xi, J. Phys. Chem. C 114, 7541 (2010).

Data & Media loading...


Article metrics loading...



Fe-doped TiO2(B) and anatase phases were synthesized at different thermal treatment conditions using Fe-doped hydrogen titanatenanorods as a precursor. X-ray diffraction, Raman and Mössbauer studies ruled out the formation of secondary phase of either metallic Fe or iron oxide cluster in the samples and confirmed the ferromagnetism have originated from the defects. Mössbauer spectroscopy studies show a doublet and measured isomer shifts support the high spin Fe3+ charge state occupying the Ti4+ sites with associated changes in local lattice environment. The magnetization at room-temperature of the TiO2(B) sample is 0.020 emu/g whereas that of anatase sample is 0.015 emu/g. The decrease of magnetization with the structural phase transformation from TiO2(B) to anatase is attributed to the reduction in number of defects (oxygen vacancy) during the transformation process. Existence of these defects was further supported by the photoluminescence measurements.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd