Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3679071
1.
1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Vonmolnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Materials Today 9, 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
4.
4. H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
5.
5. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-Y. Koshihara, and H. Koninuma, Science 291, 854 (2001).
http://dx.doi.org/10.1126/science.1056186
6.
6. S. R. Shinde, S. B. Ogale, J. S. Higgins, H. Zheng, A. J. Millis, V. N. Kulkarni, R. Ramesh, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett. 92, 166601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.166601
7.
7. S. M. Koohpayeh, A. J. Williams, J. S. Abell, J. Lim, and E. Blackburn, J. Appl. Phys. 108, 073919 (2010).
http://dx.doi.org/10.1063/1.3490997
8.
8. K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald, and K. M. Krishnan, Phys. Rev. Lett. 94, 157204 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.157204
9.
9. M. You, T. G. Kim, and Y. Sung, Cryst. Growth Des. 10, 983 (2010).
http://dx.doi.org/10.1021/cg9012944
10.
10. R. K. Singhal, A. Samariya, S. Kumar, Y. T. Xing, D. C. Jain, S. N. Dolia, U. P. Deshpande, T. Shripathi, and E. B. Saitovitch, J. Appl. Phys. 107, 113916 (2010).
http://dx.doi.org/10.1063/1.3431396
11.
11. L. C. J. Pereira, M. R. Nunes, O. C. Monteiro, and A. J. Silvestre, Appl. Phys. Lett. 93, 222502 (2008).
http://dx.doi.org/10.1063/1.3036534
12.
12. J. Chen, G-H. Lu, H. Cao, T. Wang, and Y. Xu, Appl. Phys. Lett. 93, 172504 (2008).
http://dx.doi.org/10.1063/1.3002291
13.
13. J. D. Bryan, S. M. Heald, S. A. Chambers, and D. R. Gamelin, J. Am. Chem. Soc. 126, 11640 (2004).
http://dx.doi.org/10.1021/ja047381r
14.
14. Y. Ding, W. Q. Han, and L. H. Lewis, J. Appl. Phys. 102, 123902 (2007).
http://dx.doi.org/10.1063/1.2825043
15.
15. K. Melghit, and K. Bouziane, J. Alloys Compd. 453, 102 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.11.204
16.
16. X. W. Wang, X. P. Gao, G. R. Li, L. Gao, and T. Y. Yan, Appl. Phys. Lett. 91, 143102 (2007).
http://dx.doi.org/10.1063/1.2789734
17.
17. S. K. S. Patel, and N. S. Gajbhiye, Solid State Commun. 151, 1500 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.06.021
18.
18. A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, Angew. Chem. Int. Ed. 43, 2286 (2004).
http://dx.doi.org/10.1002/anie.200353571
19.
19. U. Balachandran and N. G. Eror, J. Solid State Chem. 42, 276 (1982).
http://dx.doi.org/10.1016/0022-4596(82)90006-8
20.
20. N. V. Minh, D. H. Long, N. T. Khoi, Y. Jung, S.-J. Kim, and I.-S. Yang, IEEE Transaction on nanotechnology 7, 177 (2008).
http://dx.doi.org/10.1109/TNANO.2008.917841
21.
21. R. Yoshida, Y. Suzuki, and S. Yoshikawa, J. Solid State Chem. 178, 2179 (2005).
http://dx.doi.org/10.1016/j.jssc.2005.04.025
22.
22. Z. Nemeth, K. Nomura, and Y. Ito, J. Phys. Chem. C 113, 20044 (2009).
http://dx.doi.org/10.1021/jp9011747
23.
23. S. B. Singh, M. V. Limaye, S. K. Date, S. Gokhale, and S. K. Kulkarni, Phys. Rev. B 80, 235421 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235421
24.
24. E. Erdem, R.-A. Eichel, C. Fetzer, I. Dézsi, S. Lauterbach, H.-J. Kleebe, and A. G. Balogh, J. Appl. Phys. 107, 054109 (2010).
http://dx.doi.org/10.1063/1.3327436
25.
25. S. Zhu, Y. Li, C. Fan, D. Zhang, W. Liu, Z. Sun, and S. Wei, Physica B 364, 199 (2005).
http://dx.doi.org/10.1016/j.physb.2005.04.013
26.
26. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287,1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
27.
27. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
http://dx.doi.org/10.1103/PhysRev.96.99
28.
28. J. Chen, P. Rulis, L. Ouyang, S. Satpathy, and W. Y. Ching, Phys. Rev. B 74, 235207 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.235207
29.
29. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
30.
30. A. Kaminiski, S. D. Sarma, Phys. Rev. Lett. 88, 247202 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.247202
31.
31. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).
http://dx.doi.org/10.1063/1.1650041
32.
32. G. Wang, Q. Wang, W. Lu, and J. Li, J. Phys. Chem. B 110, 22029 (2006).
http://dx.doi.org/10.1021/jp064630k
33.
33. J. Hays, A. Thurber, K. M. Reddy, A. Punnoose, M. H. Engelhard, J. Appl. Phys. 99, 08M123 (2006).
http://dx.doi.org/10.1063/1.2173956
34.
34. N. Serpone, J. Phys. Chem. B 110, 24287 (2006).
http://dx.doi.org/10.1021/jp065659r
35.
35. Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Appl. Phys. Lett. 78, 1125 (2001).
http://dx.doi.org/10.1063/1.1350959
36.
36. G. Z. Xing, J. B. Yi, D. D. Wang, L. Liao, T. Yu, Z. X. Shen, C. H. A. Huan, T. C. Sum, J. Ding, and T. Wu, Phys. Rev. B 79, 174406 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.174406
37.
37. L. Zhang, S. Ge, Y. Zuo, B. Zhang, and L. Xi, J. Phys. Chem. C 114, 7541 (2010).
http://dx.doi.org/10.1021/jp9065604
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3679071
Loading
/content/aip/journal/adva/2/1/10.1063/1.3679071
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3679071
2012-01-11
2016-09-26

Abstract

Fe-doped TiO2(B) and anatase phases were synthesized at different thermal treatment conditions using Fe-doped hydrogen titanatenanorods as a precursor. X-ray diffraction, Raman and Mössbauer studies ruled out the formation of secondary phase of either metallic Fe or iron oxide cluster in the samples and confirmed the ferromagnetism have originated from the defects. Mössbauer spectroscopy studies show a doublet and measured isomer shifts support the high spin Fe3+ charge state occupying the Ti4+ sites with associated changes in local lattice environment. The magnetization at room-temperature of the TiO2(B) sample is 0.020 emu/g whereas that of anatase sample is 0.015 emu/g. The decrease of magnetization with the structural phase transformation from TiO2(B) to anatase is attributed to the reduction in number of defects (oxygen vacancy) during the transformation process. Existence of these defects was further supported by the photoluminescence measurements.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3679071.html;jsessionid=VjjmyTJ-WIjPU5tW0buCMgiO.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3679071&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3679071&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3679071'
Right1,Right2,Right3,