Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3679155
1.
1. H. S. Nalwa, Handbook of Advanced Electronic and Photonic Material Devices, Vol. 8, (Academic Press, London, 2000).
2.
2. M. Berggren, D. Nilsson, and N. Robinson, Nature Mater. 6, 3 (2007).
http://dx.doi.org/10.1038/nmat1817
3.
3. F. Roussel, R. Chan Yu King, and J.-M. Buisine, Eur. Phys. J. E 11, 293 (2003).
http://dx.doi.org/10.1140/epje/i2002-10158-1
4.
4. M. Boussoualem, R. Chan Yu King, J.-F. Brun, B. Duponchel, M. Ismaili, and F. Roussel, J. Appl. Phys. 108, 113526 (2010).
http://dx.doi.org/10.1063/1.3518041
5.
5. M. S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, New York, 2001).
6.
6. M. Monthioux, P. Serp, E. Flahaut, M. Razafinimanana, C. Laurent, A. Peigney, W. Bacsa, J.-M. Broto, in Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin, 2004), Chapt. 3, p. 39.
7.
7. L. Hu, D. S. Hecht, G. Gruner, Chem. Rev. 110, 57905844 (2010).
http://dx.doi.org/10.1021/cr9002962
8.
8. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morizov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Nanoletters 8, 17041708 (2008).
http://dx.doi.org/10.1021/nl080649i
9.
9. J. Opatkiewicz, M. C. LeMieux, and Z. Bao, ACSNano 4, 29752978 (2010).
10.
10. E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2005).
http://dx.doi.org/10.1063/1.1564291
11.
11. D. Sun, M. Y. Timmermans, Y. Tian, A. G. Nasibulin, E. I. Kauppinen, S. Kishimoto, T. Mizutani, and Y. Ohno, Nature Nanotech. doi:10.1038/nnano.2011.1 (2011).
http://dx.doi.org/10.1038/nnano.2011.1
12.
12. K. Parikh, K. Cattanach, R. R. Rao, D.-S. Suh, A. Wu, and S. K. Manohar, Sensors and Actuators B113, 55 (2006).
13.
13. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nat. Mater. 8, 494499 (2009).
http://dx.doi.org/10.1038/nmat2459
14.
14. R. Chan Yu King, F. Roussel, Appl. Phys. A 86, 159163 (2007).
http://dx.doi.org/10.1007/s00339-006-3757-z
16.
16. I. C. Khoo, S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
17.
17. K. Takato, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, Alignment Technologies and Applications of Liquid Crystals (CRC Press, London 2005).
18.
18. R. Lin and J. A. Rogers, Nanoletters 7, 16131621 (2007).
http://dx.doi.org/10.1021/nl070559y
19.
19. H. Takashi, T. Sakamoto, and H. Okada, J. Appl. Phys. 108, 113529 (2010).
http://dx.doi.org/10.1063/1.3505758
20.
20. W. Schenck, D.-H. Ko, and E. Samulski, J. Appl. Phys. 109, 064301 (2011).
http://dx.doi.org/10.1063/1.3549809
21.
21. J. M. Russell, S. Osamulski, I. LaRue, O. Zhou, and E. T. Samulski, Thin Solid Films 509, 5357 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.09.099
22.
22. H. W. Lee, W. You, S. Barman, S. Hellstrom, M. C. LeMieux, J. H. Oh, S. Liu, T. Fujiwara, W. M. Wang, B. Chen, Y. W. Jin, J. M. Kim, and Z. Bao, Small 9, 10191024 (2009).
http://dx.doi.org/10.1002/smll.200800640
23.
23. W. Fu, L. Liu, K. Jiang, Q. Li, S. Fan, Carbon 48, 18761879 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.01.026
24.
24. L. Huang, X. Cui, B. White, and S. O’Brien, J. Phys. Chem B 108, 1645116456 (2004).
http://dx.doi.org/10.1021/jp0474125
25.
25. C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim and J. A. Rogers, Small 1, 11101116 (2005).
http://dx.doi.org/10.1002/smll.200500120
26.
26. Raman spectra were fitted using the free software FOCUS available at: http://www.cemhti.cnrs-orleans.fr/pot/software/focus.html
27.
27. V. Ranieri, D. Bourgogne, S. Darracq, M. Cambon, J. Haines, O. Cambon, R. Leparc, C. Levelut, A. Largeteau, and G. Demazeau, Phys. Rev. B 79, 224304 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224304
28.
28. T. Michel, M. Paillet, D. Nakabayashi, M. Picher, V. Jourdain, J. C. Meyer, A. A. Zahab, and J.-L. Sauvajol, Phys. Rev. B 80, 245416 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245416
29.
29. J. S. Soares, L. G. Cancado, E. B. Barros, and A. Jorio, Phys. Status Solidi B 247, 28352837 (2010).
http://dx.doi.org/10.1002/pssb.201000239
30.
30. G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, Phys. Rev. Lett. 85, 5436 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5436
31.
31. Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Phys. Rev. Lett. 94, 0874021 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.087402
32.
32. N. Pimparkar, S. Kumar, Q. Cao, J. A. Rogers, J. Y. Murthy, and M. A. Alam, IEEE Electron Device Lett. 28, 593595 (2007).
http://dx.doi.org/10.1109/LED.2007.898256
33.
33. J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, and T. Marks, Nanoletters 6, 24722477 (2006).
http://dx.doi.org/10.1021/nl061616a
34.
34. J. Nehring and A. Saupe, J. Chem. Soc. Faraday Trans. 2 68, 115 (1972).
http://dx.doi.org/10.1039/f29726800001
35.
35. D. W. Berreman, Phys. Rev. Lett. 28, 1683 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.1683
36.
36. A. Sugimura, T. Miyamoto, M. Tsuji, and M. Kuze, Appl. Phys. Lett 172, 329331 (1998).
http://dx.doi.org/10.1063/1.120727
37.
37. F. Tournus, S. Latil, M. I. Heggie, and J.-C. Charlier, Phys. Rev. B 72, 075431 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075431
38.
38. A. Sugimura and D. Ishino, Thin Solid Films 438-439, 433439 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00800-9
39.
39. S. Valyukh, I. Valyukh, V. Chigrinov, H. S. Kwok, and H. Arwin, Appl. Phys. Lett. 97, 231120 (2010).
http://dx.doi.org/10.1063/1.3526311
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3679155
Loading
/content/aip/journal/adva/2/1/10.1063/1.3679155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3679155
2012-01-11
2016-09-26

Abstract

We report on the physical characteristics of horizonthally-grown Single-Walled Carbon Nanotubes (h-al-SWNT) arrays and their potential use as transparent and conducting alignment layer for liquid crystals displaydevices.Microscopy(SEM and AFM), spectroscopic (Raman) and electrical investigations demonstrate the strong anisotropy of h-al-SWNT arrays. Optical measurements show that h-al-SWNTs are efficient alignment layers for Liquid Crystal(LC) molecules allowing the fabrication of optical wave plates. Interactions between h-al-SWNT arrays and LC molecules are also investigated evidencing the weak azimuthal anchoring energy at the interface, which, in turn, leads to LCdevices with a high pretilt angle. The electro-optical reponses of h-al-SWNT/LC cells demonstrate that h-al-SWNT arrays are efficient nanostructured electrodes with potential use for the combined replacement of Indium Tin Oxyde and polymeric alignment layers in conventional displays.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3679155.html;jsessionid=u4diWipbTnGTMJ6xBGH2Vonb.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3679155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3679155&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3679155'
Right1,Right2,Right3,