Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3679160
1.
1. D. A. Wright, Nature 181(4612), 834834 (1958).
http://dx.doi.org/10.1038/181834a0
2.
2. V. Goyal, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 97(13), 133117 (2010).
http://dx.doi.org/10.1063/1.3494529
3.
3. I. Bejenari, V. Kantser, and A. A. Balandin, Phys. Rev. B 81(7), 075316 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075316
4.
4. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5(6), 438442 (2009).
http://dx.doi.org/10.1038/nphys1270
5.
5. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325(5937), 178181 (2009).
http://dx.doi.org/10.1126/science.1173034
6.
6. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 103(14), 146401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146401
7.
7. J. Moore, Nat. Phys. 5(6), 378380 (2009).
http://dx.doi.org/10.1038/nphys1294
8.
8. X. L. Qi and S. C. Zhang, Phys. Today 63(1), 3338 (2010).
http://dx.doi.org/10.1063/1.3293411
9.
9. X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Science 323(5918), 11841187 (2009).
http://dx.doi.org/10.1126/science.1167747
10.
10. L. Fu and C. L. Kane, Phys. Rev. Lett. 100(9), 096407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096407
11.
11. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82(4), 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
12.
12. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Y. Cui, Nat. Mater. 9(3), 225229 (2010).
http://dx.doi.org/10.1038/nmat2609
13.
13. F. Xiu, L. He, Y. Wang, L. Cheng, L.-T. Chang, M. Lang, G. Huang, X. Kou, Y. Zhou, X. Jiang, Z. Chen, J. Zou, A. Shailos, and K. L. Wang, Nat. Nano. 6(4), 216221 (2011).
http://dx.doi.org/10.1038/nnano.2011.19
14.
14. D. Kong, J. C. Randel, H. Peng, J. J. Cha, S. Meister, K. Lai, Y. Chen, Z.-X. Shen, H. C. Manoharan, and Y. Cui, Nano Lett. 10(1), 329333 (2009).
http://dx.doi.org/10.1021/nl903663a
15.
15. D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Nano Lett. 10(6), 22452250 (2010).
http://dx.doi.org/10.1021/nl101260j
16.
16. Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L.-L. Wang, X. Chen, J.-F. Jia, Z. Fang, X. Dai, W.-Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys. 6(8), 584588 (2010).
http://dx.doi.org/10.1038/nphys1689
17.
17. S. S. Datta, D. R. Strachan, E. J. Mele, and A. T. C. Johnson, Nano Lett. 9(1), 711 (2008).
http://dx.doi.org/10.1021/nl8009044
18.
18. R. Wang, S. Wang, D. Zhang, Z. Li, Y. Fang, and X. Qiu, ACS Nano 5(1), 408412 (2010).
http://dx.doi.org/10.1021/nn102236x
19.
19. G. L. Hao, X. Qi, J. Li, L. W. Yang, J. J. Yin, F. Lu, and J. X. Zhong, Solid State Commu. 151(11), 818821 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.03.025
20.
20. D. J. Ellison, B. Lee, V. Podzorov, and C. D. Frisbie, Adv. Mater. 23(4), 502507 (2011).
http://dx.doi.org/10.1002/adma.201003122
21.
21. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, ACS Nano 4(5), 26892694 (2010).
http://dx.doi.org/10.1021/nn1005478
22.
22. V. Palermo, M. Palma, and P. Samorì, Adv. Mater. 18(2), 145164 (2006).
http://dx.doi.org/10.1002/adma.200501394
23.
23. S. Lee, C.-W. Liang, and L. W. Martin, ACS Nano 5(5), 37363743 (2011).
http://dx.doi.org/10.1021/nn2001933
24.
24. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9(10), 34303434 (2009).
http://dx.doi.org/10.1021/nl901572a
25.
25. D. Teweldebrhan, V. Goyal, M. Rahman, and A. A. Balandin, Appl. Phys. Lett. 96, 053107 (2010).
http://dx.doi.org/10.1063/1.3280078
26.
26. G. Wang, X.-G. Zhu, Y.-Y. Sun, Y.-Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L.-L. Wang, X.-C. Ma, J.-F. Jia, S. B. Zhang, and Q.-K. Xue, Adv. Mater. 23(26), 29292932 (2011).
http://dx.doi.org/10.1002/adma.201100678
27.
27. Q.-K. Xue, Nat. Nano. 6(4), 197198 (2011).
http://dx.doi.org/10.1038/nnano.2011.47
28.
28. D. Teweldebrhan, V. Goyal, and A. A. Balandin, Nano Lett. 10(4), 12091218 (2010).
http://dx.doi.org/10.1021/nl903590b
29.
29. K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan, and A. A. Balandin, Appl. Phys. Lett. 96, 153103 (2010).
http://dx.doi.org/10.1063/1.3396190
30.
30. L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, Nature 434(7030), 194199 (2005).
http://dx.doi.org/10.1038/nature03376
31.
31. E. H. Nicollian, C. N. Berglund, P. F. Schmidt, and J. M. Andrews, J. Appl. Phys. 42, 56545664 (1971).
http://dx.doi.org/10.1063/1.1659996
32.
32. Y. Nagasawa, I. Yoshii, K. Naruke, K. Yamamoto, H. Ishida, and A. Ishitani, J. Appl. Phys. 68, 14291434 (1990).
http://dx.doi.org/10.1063/1.346669
33.
33. V. Dugas and Y. Chevalier, Journal of Colloid and Interface Science 264(2), 354361 (2003).
http://dx.doi.org/10.1016/S0021-9797(03)00552-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3679160
Loading
/content/aip/journal/adva/2/1/10.1063/1.3679160
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3679160
2012-01-12
2016-12-04

Abstract

Topological insulator Bi2Te3 nanoplates with hexagonal, triangular and truncated triangular nanostructures have been fabricated with thickness of ∼10 nm by vacuum vapor phase deposition method. The possible formation mechanism of Bi2Te3 nanoplates with different nanostructures has been proposed. We have examined the surface potentials of Bi2Te3 nanoplates using Kelvin probe force microscopy. The surface potential of Bi2Te3 nanoplates is determined to be about 482 mV on the SiO2/Si substrate, 88 mV and -112 mV on the n-doped and p-doped Si (111) substrates, respectively. The surface potential information provides insight into understanding electronic properties of Bi2Te3 nanoplates, which may open a new door to the exploration of the topological insulators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3679160.html;jsessionid=bLb_6IxkoA1PzJLSRwp7YwzK.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3679160&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3679160&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3679160'
Right1,Right2,Right3,