1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Transient spectral dependence of photoinduced magneto-optical Faraday effect in CdTe quantum dots
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3679403
1.
1. V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (Marcel Dekker, New York, 2004).
2.
2. D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 (1998).
http://dx.doi.org/10.1103/PhysRevB.53.16338
3.
3. J. Berezovsky, O. Gywat, F. Meier, D. Battaglia, X. Peng, and D. D. Awschalom, Nat. Phys. 2, 831 (2006).
http://dx.doi.org/10.1038/nphys458
4.
4. D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, and D. Gammon, Nat. Phys. 7, 223 (2011).
http://dx.doi.org/10.1038/nphys1863
5.
5. A. Greilich, Sophia E. Economou, S. Spatzek, D. R. Yakovlev, D. Reuter, A. D. Wieck, T. L. Reinecke, and M. Bayer, Nat. Phys. 5, 262 (2009).
http://dx.doi.org/10.1038/nphys1226
6.
6. R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, Science 325, 973 (2009).
http://dx.doi.org/10.1126/science.1174419
7.
7. J. He, H. Zhong, and G. D. Scholes, Phys. Rev. Lett. 105, 046601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.046601
8.
8. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
9.
9. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.120
10.
10. J. A. Gupta, D. D. Awschalom, Al. L. Efros, and A. V. Rodina, Phys. Rev. B 66, 125307 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.125307
11.
11. Ye Chen, Tsuyoshi Okuno, Yasuaki Masumoto, Yoshikazu Terai, Shinji Kuroda, and Koki Takita, Phys. Rev. B 71, 033314 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.033314
12.
12. S. Mackowski, T. Gurung, H. E. Jackson, L. M. Smith, W. Heiss, J. Kossut, and G. Karczewski, Appl. Phys. Lett. 86, 103101 (2005)
http://dx.doi.org/10.1063/1.1875763
13.
13. I. A. Yugova, M. M. Glazov, E. L. Ivchenko, and Al. L. Efros, Phys. Rev. B 80, 104436 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.104436
14.
14. G. D. Scholes, J. Kim, and C. Y. Wong, Phys. Rev. B 73, 195325 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195325
15.
15. R. Wilks, N. D. Hughes, and R. J. Hicken, J. Phys.: Condens. Matter. 15, 5129 (2003).
http://dx.doi.org/10.1088/0953-8984/15/29/325
16.
16. Shinichi Tomimoto, Shinsuke Nozawa, Yoshikazu Terai, Shinji Kuroda, Kôki Takita, and Yasuaki Masumoto, Phys. Rev. B 81, 125313 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125313
17.
17. E. A. Zhukov, D. R. Yakovlev, M. M. Glazov, L. Fokina, G. Karczewski, T. Wojtowicz, J. Kossut, and M. Bayer, Phys. Rev. B 81, 235320 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235320
18.
18. J. H. Versluis, A. V. Kimel, V. N. Gridnev, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, J. Kossut, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 80, 235326 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235326
19.
19. P. Horodyská, P. Němec, D. Sprinzl, P. Malý, V. N. Gladilin, and J. T. Devreese, Phys. Rev. B 81, 045301 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045301
20.
20. Y. He, L. M. Sai, H. T. Lu, M. Hu, W. Y. Lai, Q. L. Fan, L. H. Wang, and W. Huang, Chem. Mater. 19, 359 (2007).
http://dx.doi.org/10.1021/cm061863f
21.
21. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4843
22.
22. A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, and Th. Rasing, Phys. Rev. B 63, 235201 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.235201
23.
23. A. V. Kimel, V. V. Pavlov, R. V. Pisarev, V. N. Gridnev, F. Bentivegna, and Th. Rasing, Phys. Rev. B 62, R10610 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R10610
24.
24. A. V. Kimel, R. V. Pisarev, F. Bentivegna, and Th. Rasing, Phys. Rev. B 64, R201103 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.201103
25.
25. A. V. Kimel, A. A. Tsvetkov, A. Kirilyuk, Th. Rasing, and V. N. Gridnev, Phys. Rev. B 69, 165214 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165214
26.
26. L. J. Sham, J. Magn. Magn. Mater. 200, 219 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00312-1
27.
27. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol, 1997).
28.
28. A. G. Aronov and E. L. Ivchenko, Sov. Phys. Solid State 15, 160 (1973).
29.
29. L. Viña, L. Muñoz, E. Pérez, J. Fernández-Rossier, C. Tejedor, and K. Ploog, Phys. Rev. B 54, R8317 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R8317
30.
30. M. Wesseli, and M. Betz, Phys. Rev. B 76, 073201 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073201
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3679403
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Absorption (black solid line) and steady-state photoluminescence (red dash line) spectra of colloidal 3.3-nm-CdTe QDs.

Image of FIG. 2.

Click to view

FIG. 2.

Time-resolved ellipticity change (ε) for CdTe QDs solution (a) and solvent (water) (b) with σ+ (black curves) and σ- (red curves) pump pulses excitations, respectively. (c) The sum (σ+ + σ) and difference (σ+ − σ) of the experimental results in (a). The pump intensity and wavelength are 4.8 GW/cm2 and 530 nm, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

The pump intensity dependence of εF with the pump wavelength of 510 nm. The inset shows the values of εF near zero delay time as a function of the pump intensity. The solid line is a linear fitting.

Image of FIG. 4.

Click to view

FIG. 4.

Spectral dependences of photo-induced (a) Faraday rotation (θF) and ellipticity (εF), and (b) photo-induced birefringence (Δn) and dichroism (Δα) under the action of circularly polarized pump pulses.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3679403
2012-01-12
2014-04-25

Abstract

The time-resolved photo-induced magneto-optical response of water soluble cadmium telluride (CdTe) colloidal quantum dots(QDs) is studied in the spectral range across the first exciton (1S3/21Se) transition at room temperature without external magnetic field. Spectral dependence of the Faraday ellipticity reaches an extremum near the first exciton transition energy, while the Faraday rotation shows a sign reversal, which indicates that the spectral dependence of photo-induced Faraday effect evolves from a diamagnetic to a paramagnetic behavior during the exciton spin relaxation process in CdTeQDs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3679403.html;jsessionid=37scfft52s017.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3679403&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transient spectral dependence of photoinduced magneto-optical Faraday effect in CdTe quantum dots
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3679403
10.1063/1.3679403
SEARCH_EXPAND_ITEM