Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Adachi, R. Kwong, and S. R. Forrest, Org. Electron. 2, 37 (2001).
2. C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000).
3. Q. S. Zhang, Q. G. Zhou, Y. X. Cheng, L. X. Wang, D. G. Ma, X. B. Jing, and F. S. Wang, Adv. Mater. 16, 432 (2004).
4. B. D. Chin, M. C. Suh, M. Kim, S. T. Lee, H. D. Kim, and H. K. Chung, Appl. Phys. Lett. 86, 133505 (2005).
5. S. H. Kim, J. Jang, J. M. Hong, and J. Y. Lee, Appl. Phys. Lett. 90, 173501 (2007).
6. G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
7. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, Appl. Phys. Lett. 79, 156 (2001).
8. H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown, and C. Adachi, Chem. Mater. 16, 1285 (2004).
9. K. Wong, Y. Chen, Y. Lin, H. Su, and C. Wu, Org. Lett. 7, 5361 (2005).
10. Y. Qiu, Y. Gao, P. Wei, and L. Wang, Appl. Phys. Lett. 80, 2628 (2002).
11. Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, Appl. Phys. Lett. 81, 3540 (2002).
12. J. Yang, C. K. Suman, and C. Lee, Microelectronic Journal 40, 63 (2009).
13. T. J. Park, W. S. Jeon, J. W. Choi, R. Pode, J. Jang, and J. H. Kwon, Appl. Phys. Lett. 95, 103303 (2009).
14. S. Liu, B. Li, L. Zhang, H. Song, and H. Jiang, Appl. Phys. Lett. 97, 083304 (2010).
15. Y. Divayana and X. W. Sun, Phys. Rev. Lett. 99, 143003 (2007).
16. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
17. J. H. Seo, K. H. Lee, B. M. Seo, J. R. Koo, S. J. Moon, J. K. Park, S. S. Yoon, and Y. K. Kim, Org. Electron. 11, 1605 (2010).
18. J. S. Huang, K. X. Yang, S. Y. Liu, and H. J. Jiang, Appl. Phys. Lett. 77, 1750 (2000).
19. Z. R. Xie, T. C. Wong, L. S. Hung, and S. T. Lee, Appl. Phys. Lett. 80, 1477 (2002).
20. K. S. Yook, S. O. Jeon, O. Y. Kim, and J. Y. Lee, J. Ind. & Eng. Chem. 16, 813 (2010).

Data & Media loading...


Article metrics loading...



We demonstrate red phosphorescent organic light-emitting diodes(OLEDs) with multiple quantum well structures which confine triplet exciton inside an emitting layer (EML) region. Five types of OLEDs, from a single to five quantum wells, are fabricated with charge control layers to produce high efficiencies, and the performance of the devices is investigated. The improved quantum efficiency and lifetime of the OLED with four quantum wells, and its suppressed quantum efficiency roll-off of 17.6%, can be described by the increased electron–hole charge balance owing to the bipolar property as well as the efficient triplet exciton confinement within each EML, and by prevention of serious triplet–triplet and/or triplet–polaron annihilation as well as the Förster self-quenching due to charge control layers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd