Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. C. Chen, G. Z. Liu, W. H. Huang, Z. M. Song, J. P. Fan and H. J. Wang, IEEE Trans. Plasma Sci. 30, 1108 (2002).
2. M. Fuks and E. Schamiloglu, Phys. Rev. Lett. 95, 205101 (2005).
3. M. Q. Liu, G. Michel, S. Prasad, M. I. Fuks, E. Schamiloglu, and C. L. Liu, Appl. Phys. Lett. 97, 251501 (2010).
4. X. J. Ge, H. H. Zhong, B. L. Qian, J. Zhang, L. Liu, L. Gao, C. W. Yuan, and J. T. He, Appl. Phys. Lett. 97, 241501 (2010).
5. R. Prather, Phys. Plasmas 11, 2349 (2004).
6. R. C. Hansen, J. Mcspadden, and J. Benford, IEEE Trans. Microwave Theory Tech. 40, 1251 (1992).
7. R. Z. Xiao, X. W. Zhang, L. J. Zhang, X. Z. Li, L. G. Zhang, W. Song, Y. M. Hu, J. Sun, S. F. Huo, C. H. Chen, Q. Y. Zhang, and G. Z. Liu, Laser Particle Beams 28, 505 (2010).
8. A. I. Klimov, I. K. Kurkan, S. D. Polevin, V. V. Rostov, and E. M. Totmeninov, Tech. Phys. Lett. 34, 235 (2008).
9. Z. H. L, Appl.Phys.Lett. 92, 054102 (2008)
10. C. Chang, J. Y. Fang, Z. Q. Zhang, C. H. Chen, C. X. Tang, and Q. L. Jin, Appl. Phys. Lett. 97, 141503 (2010).
11. C. Chang, G. Z. Liu, C. X. Tang, C. H. Chen, H. Shao, and W. H. Huang, Appl. Phys. Lett. 96, 111502 (2010).
12. A. Neuber, J. Krile, G. Edmiston, and H. Krompholz, Phys. Plasmas 14, 057102 (2007).
13. F. hegeler, C. Grabowski, and E. Schamiloglu, IEEE Trans. Plasma Sci. 26, 275 (1998).
14. S. D. Korovin, G. A. Mesyats, I. V. Pegel, S. D. Polevin, and V. P. Tarakanov, IEEE Trans. Plasma Sci. 28, 485 (2000).
15. S. D. Polevin, S. D. Korovin, B. M. Kovalchuk, K. V. Karlik, I. K. Kurkan, G. E. Ozur, I. V. Pegel, D. I. Proskurovsky, M. Yu. Sukhov, and S. N. Volkov, Proc. 2006 Symposium on High Current Electronics, 2006.
16. W. Song, C. H. Chen, L. G. Zhang, Y. M. Hu, M. Yang, X. W. Zhang, and L. J. Zhang, Phys. Plasmas 18, 06105 (2011).
17. J. H. Billen and L. M. Young, Possion Superfish, LA-UR-96-1834.

Data & Media loading...


Article metrics loading...



An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd