banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Laser micro-fabrication of concave, low-roughness features in silica
Rent this article for
Access full text Article
1. F. Laguarta, N. Lupon, and J. Armengol, Appl. Opt. 33, 6508 (1994).
2. K. M. Nowak, H. J. Baker, and D. R. Hall, Appl. Opt. 45, 162 (2006).
3. U. C. Paek and A. L. Waver, Appl. Opt. 14, 294 (1975).
4. M. Wakaki, Y. Komachi, and G. Kanai, Appl. Opt. 37, 627 (1998).
5. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, Phys. Rev. A 57, R2293 (1998).
6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
7. M. Feit and A. Rubenchik, in Proc. SPIE (2003), vol. 4932, p. 91.
8. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, Appl. Opt. 45, 5358 (2006).
9. G. A. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, Appl. Opt. 41, 5660 (2002).
10. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Nature 450, 272 (2007).
11. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, APL 97, 021107 (2010).
12. R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, J. Appl. Phys. (2011).
13. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, New J. Phys. 12, 065038 (2010).
14. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, Opt. Lett. 35, 2293 (2010).
15. M. von Allmen and A. Blatter, Laser-Beam interactions with materials, Springer Series in Materials Science Vol. 2 (Springer, Heidelberg, 1995).
16. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, J. Appl. Phys. 106, 103106 (2009).
17. J. M. Bennett, Meas. Sci. Technol. 3, 1119 (1992).
18. C. J. Hood, H. J. Kimble, and J. Ye, Phys. Rev. A 64, 033804 (2001).
19. J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, Nature 475, 210 (2011).
View: Figures


Image of FIG. 1.

Click to view

FIG. 1.

(a) Surface profile of a machined fiber measured by the optical profilometer. Beam parameters are P = 420 mW, τ p = 27 ms and w = 28 μm. (b) Cut through the center of the profile shown in (a) (red solid line) and its fit to a Gaussian (black dash-dotted line). (c) Central part of the same data (red solid line) along with a circle fitted to the center yielding R = 70.8 μm (black dash-dotted line). Also shown is the local radius of curvature as calculated from a high-order polynomial fit to the data (green dotted line). (d) Quantities used to characterize the profile. R designates the radius of curvature in the center of the structure. d is the structure diameter as defined in the text and t the depth of the structure.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Central radius of curvature R as a function of pulse train duration τ p for various powers P. m fibers were used and the waist was w = 27 μm. (b) Measured structure depth t as a function of laser power P for w = 27 μm and three different pulse lengths.

Image of FIG. 3.

Click to view

FIG. 3.

Experimentally realized geometries: R as a function of t. Beam powers and waists: ■ 600 mW, 26 μm. □ 1.85 W, 73 μm. • 373 mW, 27 μm. ○ 0.9 W, 63 μm. ▲ 540 mW, 28 μm. △ 575 mW, 63 μm. Data for a given parameter set were taken by varying τ p ; τ p increases from left to right. Squares: bulk material, circles: m fiber, triangles: m fiber. Inset: The measured R agrees well with the value R g calculated from d and t. (Straight line: R = R g .)

Image of FIG. 4.

Click to view

FIG. 4.

(a) Surface profiles (measured with the optical profiler) for different values of τ p . Shown are cuts through the center of m fibers for P = 572 mW, w = 51 μm. The curves are vertically offset by 100 nm for readability. (b) Measured central depth and (c) measured diameter of the depression as a function of τ p for similar beam parameters on different targets: • m fibers. m fibers. ■ 2 mm thick fused silica plate. Solid lines: Fit to the described model, where κ is used as fitting parameter to the data in (b). We find κ = 2.05 W/mK for the 125 μm fibers, κ = 2.0 W/mK for the 200 μm fiber, and κ = 2.55 W/mK for the glass plate. The same parameters are used for the model curves in (c), yielding a reasonable agreement for the plate, but not for the fibers. Beam parameters: • 600 mW, 26 μm. ▲ 540 mW, 28 μm. ■ 600 mW, 26 μm.

Image of FIG. 5.

Click to view

FIG. 5.

(a) AFM measurement of a 2 × 2 μm2 area in the center of a laser machined area. Shown is the surface elevation after substracting a fitted polynomial. (b) The 2D PSD of a 5 × 5 μm2 AFM scan for the remaining height elevation.


Article metrics loading...



We describe a micro-fabrication method to create concave features with ultra-low roughness in silica, either on optical fibers or on flat substrates. The machining uses a single CO2 laser pulse train. Parameters are chosen such that evaporation removes material while a low-viscosity melt layer produces excellent surface quality. A surface roughness σ ∼ 0.2 nm is regularly obtained. The concave depressions are near-spherical close to the center with radii of curvature between 20 and 2000 μm. The method allows fabrication of low-scatter micro-optical devices such as mirror substrates for high-finesse cavities or negative lenses on fiber tips, extending the range of micro-optical components.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Laser micro-fabrication of concave, low-roughness features in silica