Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3679725
1.
1. R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C. H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y. H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin, and R. Ramesh, Science 326, 977 (2009).
http://dx.doi.org/10.1126/science.1177046
2.
2. S. A. Hayward, S. A. T. Redfern, and E. K. H. Salje, J. Phys.: Condens. Matter 14, 10131 (2002).
http://dx.doi.org/10.1088/0953-8984/14/43/311
3.
3. S. A. Hayward, F. D. Morrison, S. A. T. Redfern, E. K. H. Salje, J. F. Scott, K. S. Knight, S. Tarantino, A. M. Glazer, V. Shuvaeva, P. Daniel, M. Zhang, and M. A. Carpenter, Phys. Rev. B 72, 054110 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054110
4.
4. Z. M. Zhang, B. I. Choi, M. I. Flik, and A. C. Anderson, J. Opt. Soc. Am. B 11, 2252 (1994).
http://dx.doi.org/10.1364/JOSAB.11.002252
5.
5. V. G. Sathe and A. Dubey, J. Phys.: Condens. Matter 19, 382201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/38/382201
6.
6. P. Delugas, V. Fiorentini, and A. Filippetti, Phys. Rev. B 71(13), 134302 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.134302
7.
7. C. Zuccaro, M. Winter, N. Klein, and K. Urban, J. Appl. Phys. 82, 5695 (1997).
http://dx.doi.org/10.1063/1.366433
8.
8. K. Nomura, S. Okami, X. J. Xie, M. Mizuno, K. Fukunaga, and Y. Ohki, Jpn. J. Appl. Phys. 50, 021502 (2011).
http://dx.doi.org/10.1143/JJAP.50.021502
9.
9. D. Grischkowsky and S. Keiding, Appl. Phys. Lett. 57, 1055 (1990).
http://dx.doi.org/10.1063/1.104280
10.
10. R. D. Averitt and A. J. Taylor, J. Phys.: Condens. Matter 14, R1357 (2002).
http://dx.doi.org/10.1088/0953-8984/14/50/203
11.
11. J. Shan, F. Wang, E. Knoesel, M. Bonn, and T. F. Heinz, Phys. Rev. Lett. 90, 247401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.247401
12.
12. K. R. Mavani, M. Nagai, D. S. Rana, H. Yada, I. Kawayama, M. Tonouchi, and K. Tanaka, Appl. Phys. Lett. 93, 231908 (2008).
http://dx.doi.org/10.1063/1.3041638
13.
13. J. B. Baxter and C. A. Schmuttenmaer, Phys. Rev. B 80, 235205 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235205
14.
14. J. G. Han, B. K. Woo, W. Chen, M. Sang, X. C. Lu, and W. L. Zhang, J. Phys. Chem. C 112, 17512 (2008).
http://dx.doi.org/10.1021/jp805880p
15.
15. L. Duvillaret, F. Garet, and J. L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
http://dx.doi.org/10.1109/2944.571775
16.
16. S. Bueble, K. Knorr, E. Brecht, and W. W. Schmahl, Surf. Sci. 400, 345 (1998).
http://dx.doi.org/10.1016/S0039-6028(97)00891-1
17.
17. A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).
http://dx.doi.org/10.1063/1.1979470
18.
18. D. Talbayev, A. D. LaForge, S. A. Trugman, N. Hur, A. J. Taylor, R. D. Averitt, and D. N. Basov, Phys. Rev. Lett. 101, 247601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.247601
19.
19. R. Vali, Comput. Mater. Sci. 44, 779 (2008).
http://dx.doi.org/10.1016/j.commatsci.2008.05.029
20.
20. Pietro Delugas, Vincenzo Fiorentini, and Alessio Filippetti, Phys. Rev. B 71, 134302 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.134302
21.
21. O. Delaire, M. Kresch, J. A. Munoz, M. S. Lucas, J. Y. Y. Lin, and B. Fultz, Phys. Rev. B 77, 214112 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.214112
22.
22. B. Fultz, Prog. Mater Sci. 55, 247 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2009.05.002
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3679725
Loading
/content/aip/journal/adva/2/1/10.1063/1.3679725
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3679725
2012-01-13
2016-12-08

Abstract

We present THz conductivity of LaAlO3 (LAO) as a function of temperature and annealing, using terahertz time-domain spectroscopy(THz-TDS). We observed that, after annealing, spectral weight redistribution occurs, such that the real conductivity σ1(ω) changed from a featureless and almost frequency-independent spectrum, into one where peaks occur near the phonon frequencies. These phonon frequencies increase with increasing temperature. We attribute the appearance of these absorption peaks to the diffusion and relocation of oxygen vacancies. The dielectric functions of annealed LAO are well fitted with the Drude-Lorentz model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3679725.html;jsessionid=TMf5bLjTDtPQyk15LDNLRPLh.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3679725&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3679725&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3679725'
Right1,Right2,Right3,