Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3684600
1.
1. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
2.
2. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Kastenelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Nat. phys. 2, 177 (2006).
http://dx.doi.org/10.1038/nphys245
3.
3. K. Yang, Solid State Commun. 143, 27 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.03.051
4.
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
5.
5. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
6.
6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
7.
7. K. Saito, J. Nakamura, and A. Natori, Phys. Rev. B 76, 115409 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.115409
8.
8. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
9.
9. J.-W. Jiang, J.-S. Wang, and B. Li, Phys. Rev. B 79, 205418 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205418
10.
10. D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Appl. Phys. Lett. 94, 203103 (2009).
http://dx.doi.org/10.1063/1.3136860
11.
11. A. K. Geim and K. S. Novoselov, Nat. mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
12.
12. E. B. Sonin, Phys. Rev. B 77, 233408 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.233408
13.
13. I. W. Frank, D. M. Tanenbaum, A. M. Van Der Zande, and P. L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).
http://dx.doi.org/10.1116/1.2789446
14.
14. C. Lee, X. Wei, J. W. kysar, and J. Hone, Science 321, 5887 (2008).
15.
15. H. E. Romero, P. Joshi, A. K. Gupta, H. R. Guutierrez, M. W. Cole, S. A. Tadigadapa, and P. C. Eklund, Nanotechnology 6, 652 (2007).
16.
16. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
17.
17. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
18.
18. W. Han, R. K. Kawakami, Phys. Rev. Lett. 107, 047207 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.047207
19.
19. K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Yan Li, and R. K. Kawakami, Phys. Rev. Lett. 104, 187201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.187201
20.
20. T.- Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, G. Guntherodt, B. Beschoten, and B. Ozyilmaz, Phys. Rev. Lett. 107, 047206 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.047206
21.
21. A. Saffarzadeh and M. Ghorbani Asl, Eur. Phys. J. B 67, 239 (2009).
http://dx.doi.org/10.1140/epjb/e2009-00034-6
22.
22. C. Bai, J. Wang, S. Jia and Y. Yang, Physica E 43, 884 (2011).
http://dx.doi.org/10.1016/j.physe.2010.11.006
23.
23. A. Yamakage, K. -I. Imura, J. Cayssol, and Y. Kuramoto, EPL. 87, 47005 (2009).
http://dx.doi.org/10.1209/0295-5075/87/47005
24.
24. D. Bercioux and A. De Martino, Phys. Rev. B 81, 165410 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165410
25.
25. V. H. Nguyen, A. Bournel, and P. Dollfus, J. Appl. Phys. 109, 073717 (2011).
http://dx.doi.org/10.1063/1.3569621
26.
26. C. Bai, J. Wang, S. Jia and Y. Yang, Appl. Phys. Lett. 96, 223102 (2010).
http://dx.doi.org/10.1063/1.3432438
27.
27. C. Cao, Y. Wang, H.-P. Cheng, and J. Jiang, Appl. phys. Let. 99, 073110 (2011).
http://dx.doi.org/10.1063/1.3626596
28.
28. B. Zhou, X. Chen, B. Zhou, K.-H. Ding and G. Zhou, J. Phys.: Condens. Matter 23, 135304 (2011).
http://dx.doi.org/10.1088/0953-8984/23/13/135304
29.
29. Y. W. Son, M. Cohen, and S. G. Louie, Nature (London) 444, 347 (2006).
http://dx.doi.org/10.1038/nature05180
30.
30. T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Nano Lett. 8, 173 (2008).
http://dx.doi.org/10.1021/nl072364w
31.
31. O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125408
32.
32. H. Haugen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77, 115406 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115406
33.
33. D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B 74, 155426 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155426
34.
34. J. C. Boettger and S. B. Trickey, Phys. Rev. B 75, 121402R (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121402
35.
35. Y. Yao, F. Ye, X. L. Qi, S. -C. Zhang, and Z. Fang, Phys. Rev. B 75, 041401R (2007).
http://dx.doi.org/10.1103/PhysRevB.75.041401
36.
36. H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B 74, 165310 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.165310
37.
37. Yu. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat, Phys. Rev. Lett. 100, 107602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.107602
38.
38. O. Rader, A. Varykhalov, J. Sanchez-barriga, D. Marchenko, A. Rybkin, and A. M. Shikin, Phys. Rev. Lett. 102, 057602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.057602
39.
39. A. Varykhalov, J. Sanchez-barriga, A. M. Shikin, C. Biswas, E. vescovo, D. Marchenko, A. Rybkin, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.157601
40.
40. Z. Y. Li, Z. Q. Yang, S. Qiao, J. Hu, and R. Q. Wu, J. Phys.: Condes. Matter 23, 225502 (2011).
http://dx.doi.org/10.1088/0953-8984/23/22/225502
41.
41. A. H. Castro Neto and F. Guinea, Phys. Rev. Lett. 103, 157601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.026804
42.
42. J. L. Cardoso and P. Pereyra, EPL. 83, 38001 (2008).
http://dx.doi.org/10.1209/0295-5075/83/38001
43.
43. M. Busl and G. platero, Phys. Rev. B 82, 205304 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205304
44.
44. F. Fallah and Esmaeilzadeh, AIP Advances 1, 032113 (2011).
http://dx.doi.org/10.1063/1.3623741
45.
45. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.226801
46.
46. K. S. Yi, D. Kim, and K. S. Park, Phys. Rev. B 76, 115410 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.115410
47.
47. B. H. J. McKellar and G. J. Stephenson, Jr., Phys. Rev. C 35, 2262 (1987).
http://dx.doi.org/10.1103/PhysRevC.35.2262
48.
48. F. Zhai and H. Q. Xu, Phys. Rev. Lett. 94, 246601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.246601
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3684600
Loading
/content/aip/journal/adva/2/1/10.1063/1.3684600
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3684600
2012-02-01
2016-12-11

Abstract

Spin-inversion properties of an electron in nanoscale graphene sheets with a Rashba spin-orbit barrier is studied using transfer matrix method. It is found that for proper values of Rashba spin-orbit strength, perfect spin-inversion can occur in a wide range of electron incident angle near the normal incident. In this case, the graphene sheet with Rashba spin-orbit barrier can be considered as an electron spin-inverter. The efficiency of spin-inverter can increase up to a very high value by increasing the length of Rashba spin-orbit barrier. The effect of intrinsic spin-orbit interaction on electron spin inversion is then studied. It is shown that the efficiency of spin-inverter decreases slightly in the presence of intrinsic spin-orbit interaction. The present study can be used to design graphene-based spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3684600.html;jsessionid=TBOzq4Lbw8jwqGeFIEZCzeGi.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3684600&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3684600&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3684600'
Right1,Right2,Right3,