Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3684617
1.
1. P. R. Wallace, Phys. Rev. 71, 622 (1947).
http://dx.doi.org/10.1103/PhysRev.71.622
2.
2. J. C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
http://dx.doi.org/10.1103/PhysRev.109.272
3.
3. T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
http://dx.doi.org/10.1143/JPSJ.74.777
4.
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
5.
5. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
6.
6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
7.
7. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.407
8.
8. P. Avouris, Z. H. Chen, and V. Perebeinos, Nature Nanotechnology 2, 605 (2007).
http://dx.doi.org/10.1038/nnano.2007.300
9.
9. F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, Nature Nanotechnology 6, 179 (2011).
http://dx.doi.org/10.1038/nnano.2011.6
10.
10. P. Blake, R. Yang, S. V. Morozov, F. Schedin, L. A. Ponomarenko, A. A. Zhukov, R. R. Nair, I. V. Grigorieva, K. S. Novoselov, and A. K. Geim, Solid State Commun. 149, 1068 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.02.039
11.
11. S. Russo, M. F. Craciun, M. Yamamoto, A. F. Morpurgo, and S. Tarucha, Physica E-Low-Dimensional Systems & Nanostructures 42, 677 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.080
12.
12. A. Venugopal, L. Colombo, and E. M. Vogel, Appl. Phys. Lett. 96, 013512 (2010).
http://dx.doi.org/10.1063/1.3290248
13.
13. K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Appl. Phys. Lett. 97, 143514 (2010).
http://dx.doi.org/10.1063/1.3491804
14.
14. Y. Matsuda, W. Q. Deng, and W. A. Goddard, Journal of Physical Chemistry C 114, 17845 (2010).
http://dx.doi.org/10.1021/jp806437y
15.
15. Y. H. Wu, P. W. Qiao, T. C. Chong, and Z. X. Shen, Adv. Mater. 14, 64 (2002).
http://dx.doi.org/10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G
16.
16. Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mater. Chem. 14, 469 (2004).
http://dx.doi.org/10.1039/b311682d
17.
17. Y. H. Wu, T. Yu, and Z. X. Shen, J. Appl. Phys. 108, 071301 (2010).
http://dx.doi.org/10.1063/1.3460809
18.
18. M. S. Xu, D. Fujita, J. H. Gao, and N. Hanagata, Acs Nano 4, 2937 (2010).
http://dx.doi.org/10.1021/nn100276w
19.
19. M. Y. Zhu, J. J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, Carbon 45, 2229 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.06.017
20.
20. S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, and M. Hori, J. Appl. Phys. 106, 094302 (2009).
http://dx.doi.org/10.1063/1.3253734
21.
21. E. L. Wolf, Principles of electron tunneling spectroscopy (Oxford University Press, New York, 1989).
22.
22. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
23.
23. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3684617
Loading
/content/aip/journal/adva/2/1/10.1063/1.3684617
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3684617
2012-02-01
2016-10-01

Abstract

Metal/two-dimensional carbon junctions are characterized by using a nanoprobe in an ultrahigh vacuum environment. Significant differences were found in bias voltage (V) dependence of differential conductance (dI/dV) between edge- and side-contact; the former exhibits a clear linear relationship (i.e., dI/dV ∝ V), whereas the latter is characterized by a nonlinear dependence, dI/dV ∝ V3/2. Theoretical calculations confirm the experimental results, which are due to the robust two-dimensional nature of the carbon materials under study. Our work demonstrates the importance of contact geometry in graphene-based electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3684617.html;jsessionid=xnxv0hii8AobaF2nMPvwedDG.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3684617&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3684617&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3684617'
Right1,Right2,Right3,