1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhancement of random lasing assisted by light scattering and resonance energy transfer based on ZnO/SnO nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3684634
1.
1. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Nature 390, 671 (1997).
http://dx.doi.org/10.1038/37757
2.
2. H. Cao, Waves Random Media, 13, R1 (2003).
http://dx.doi.org/10.1088/0959-7174/13/3/201
3.
3. D. S. Wiersma, Nature 406, 132 (2000).
http://dx.doi.org/10.1038/35018184
4.
4. D. S. Wiersma, S. Cavalieri, Nature 414, 708 (2001).
http://dx.doi.org/10.1038/414708a
5.
5. H. Y. Lin, Y. Y. Chou, C. L. Cheng, and Y. F. Chen, Opt. Express 15, 13832 (2007).
http://dx.doi.org/10.1364/OE.15.013832
6.
6. C. S. Wang, Y. L. Chen, H. Y. Lin, Y. T. Chen, and Y. F. Chen, Appl. Phys. Lett. 97, 191104 (2010).
http://dx.doi.org/10.1063/1.3515913
7.
7. C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75126-1
8.
8. A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth 282, 131 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2005.04.095
9.
9. T. H. Lin, C. L. Cheng, H. Y. Shih, and Y. F. Chen, J. Appl. Phys. 105, 083541 (2009).
http://dx.doi.org/10.1063/1.3116548
10.
10. S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.14496
11.
11. X. Yong, A. A. S. Martin, Am. Mineral 85, 543 (2000).
12.
12. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
http://dx.doi.org/10.1063/1.1394173
13.
13. M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, Appl. Phys. Lett. 99, 091106 (2011).
http://dx.doi.org/10.1063/1.3631673
14.
14. J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Lett. 31, 3173 (2006).
http://dx.doi.org/10.1364/OL.31.003173
15.
15. X. Yong and A. A. S. Martin, Am. Mineral 85, 543 (2000).
16.
16. T. H. Lin, T. T. Chen, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Express 17, 4342 (2009).
http://dx.doi.org/10.1364/OE.17.004342
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3684634
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Top view SEM images of ZnO NRs for (a) and (b). A single ZnO NR without (c) and with (d) SnO NPs. (Inset) Raman spectrum and X-ray diffraction (XRD) pattern of ZnO NRs.

Image of FIG. 2.

Click to view

FIG. 2.

Raman scattering spectrum and PL spectrum (inset) of SnO NPs.

Image of FIG. 3.

Click to view

FIG. 3.

Emission spectra of random lasers of (a) ZnO NRs and (b) ZnO/SnO composite.

Image of FIG. 4.

Click to view

FIG. 4.

Plot of emission peak intensity versus pumping energy. The black box denoted ZnO NRs and the red circle denoted ZnO/SnO composite.

Image of FIG. 5.

Click to view

FIG. 5.

Emission spectra of random lasers compared between ZnO NRs and ZnO/SnO composite under the same pumping energy of 90 μJ).

Image of FIG. 6.

Click to view

FIG. 6.

(a) Energy band alignment for the ZnO/SnO coupled system. The charge carrier transferred from SnO to ZnO indicates the enhanced band gap UV emission arising from ZnO. (b) Comparison of PL measurements between ZnO NRs and ZnO/SnO composite.

Image of FIG. 7.

Click to view

FIG. 7.

Comparison of PL measurement between ZnO NRs and ZnO/Ag2O composite. (Inset) Energy band alignment for the ZnO/ Ag2O coupled system. The charge carrier transferred from ZnO to Ag2O indicates the reduced band gap UV emission arising from ZnO.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3684634
2012-02-01
2014-04-23

Abstract

A new composite consisting of ZnO nanorods and SnO nanoparticles has been synthesized and characterized. It is found that the UV laser emission from ZnO NRs can be greatly enhanced and more easily achieved by the assistance of SnO NPs. The underlying mechanism is interpreted in terms of light scattering,charge carrier transfer and fluorescence resonance energy transfer (FRET) mediated by SnO NPs. Our strategy opens a promising route for improving the external conversion efficiency of optoelectronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3684634.html;jsessionid=5h3d3z6i84il.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3684634&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of random lasing assisted by light scattering and resonance energy transfer based on ZnO/SnO nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3684634
10.1063/1.3684634
SEARCH_EXPAND_ITEM