Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “Ultralow-power organic complementary circuits,” Nature 445, 745 (2007).
2. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488 (2004).
3. E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Goncalves, S. H. K. Park, C. S. Hwang, and R. Martins, “Thin-film transistors based on p-type Cu2O thin films produced at room temperature,” Appl. Phys. Lett. 96, 192102 (2010).
4. E. M. C. Fortunato, P. M. C. Barquinha, A. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Adv. Mater. 17, 590 (2005).
5. A. Dindar, J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates,” Appl. Phys. Lett. 99, 172104 (2011).
6. A. Olziersky, P. Barquinha, A. Vila, L. Pereira, G. Goncalves, E. Fortunato, R. Martins, and J. R. Morante, “Insight on the SU-8 resist as passivation layer for transparent Ga2O3In2O3 ZnO thin-film transistors,” J. Appl. Phys. 108, 064505 (2010).
7. J. B. Kim, C. Fuentes-Hernandez, S. J. Kim, S. Choi, and B. Kippelen, “Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors,” Org. Electron. 11, 1074 (2010).
8. M. S. Oh, W. Choi, K. Lee, D. K. Hwang, and S. Im, “Flexible high gain complementary inverter using n-ZnO and p-pentacene channels on polyethersulfone substrate,” Appl. Phys. Lett. 93, 033510 (2008).
9. M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, “Stable complementary inverters with organic field-effect transistors on Cytop fluoropolymer gate dielectric,” Appl. Phys. Lett. 94, 053303 (2009).
10. Y. Fujisaki, Y. Nakajima, D. Kumaki, T. Yamamoto, S. Tokito, T. Kono, J. Nishida, and Y. Yamashita, “Air-stable n-type organic thin-film transistor array and high gain complementary inverter on flexible substrate,” Appl. Phys. Lett. 97, 133303 (2010).
11. S. K. Park, D. A. Mourey, J. I. Han, J. E. Anthony, and T. N. Jackson, “Environmental and operational stability of solution-processed 6,13-bis(triisopropyl-silylethynyl) pentacene thin film transistors,” Org. Electron. 10, 486 (2009).
12. M. H. Zhang, S. P. Tiwari, and B. Kippelen, “Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability,” Org. Electron. 10, 1133 (2009).
13. A. Suresh and J. F. Muth, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett. 92, 033502 (2008).
14. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors,” Appl. Phys. Lett. 93, 093504 (2008).
15. D. K. Hwang, C. Fuentes-Hernandez, J. B. Kim, W. J. Potscavage, S.-J. Kim, and B. Kippelen, “Top-Gate Organic Field-Effect Transistors with High Environmental and Operational Stability,” Adv. Mater. 23, 1293 (2011).
16. B. Hekmatshoar, S. Wagner, and J. C. Sturm, “Tradeoff regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework,” Appl. Phys. Lett. 95, 143504 (2009).
17. D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, and S. Im, “Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics,” Appl. Phys. Lett. 92, 013304 (2008).
18. J. M. Rabaey, Digital Integrated Circuits: A Design Perspective, first ed. (Prentice Hall, New Jersey, 1995).

Data & Media loading...


Article metrics loading...



We report on the operational stability of low-voltage hybrid organic-inorganic complementary inverters with a top-gate bottom source-drain geometry. The inverters are comprised of p-channel pentacene and n-channel amorphous InGaZnO thin-film transistors(TFTs) with bi-layer gate dielectrics formed from an amorphous layer of a fluoropolymer (CYTOP) and a high-k layer of Al2O3. The p- and n- channel TFTs show saturation mobility values of 0.1 ± 0.01 and 5.0 ± 0.5 cm2/Vs, respectively. The individual transistors show high electrical stability with less than 6% drain-to-source current variations after 1 h direct current(DC) bias stress. Complementary inverters yield hysteresis-free voltage transfer characteristics for forward and reverse input biases with static DC gain values larger than 45 V/V at 8 V before and after being subjected to different conditions of electrical stress. Small and reversible variations of the switching threshold voltage of the inverters during these stress tests are compatible with the observed stability of the individual TFTs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd