1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Magnetization states and switching in narrow-gapped ferromagnetic nanorings
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3685590
1.
1. J. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys. 87, 6668 (2000).
http://dx.doi.org/10.1063/1.372805
2.
2. F. Q. Zhu, G. W. Chern, O. Tchernyshyov, X. C. Zhu, J. G. Zhu, and C. L. Chien, Phys. Rev. Lett. 96, 027205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.027205
3.
3. F. Giesen, J. Podbielski, B. Botters, and D. Grundler, Phys. Rev. B 75, 184428 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.184428
4.
4. M. Konoto, T. Yamada, K. Koike, H. Akoh, T. Arima, and Y. Tokura, J. Appl. Phys. 103, 023904 (2008).
http://dx.doi.org/10.1063/1.2828177
5.
5. M. Klaui, J. Rothman, L. Lopez-Diaz, C. A. F. Vaz, J. A. C. Bland, and Z. Cui, Appl. Phys. Lett. 78, 3268 (2001).
http://dx.doi.org/10.1063/1.1361282
6.
6. W. Jung, F. J. Castano, and C. A. Ross, Phys. Rev. Lett. 97, 247209 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247209
7.
7. C. Nam, M. D. Mascaro, and C. A. Ross, Appl. Phys. Lett. 97, 012505 (2010).
http://dx.doi.org/10.1063/1.3459973
8.
8. F. J. Castaño, C. A. Ross, and A. Eilez, J. Phys. D: Appl. Phys. 36, 2031 (2003).
http://dx.doi.org/10.1088/0022-3727/36/17/301
9.
9. A. Libal, M. Grimsditch, V. Metlushko, P. Vavassori, and B. Janko, J. Appl. Phys. 98, 083904 (2005).
http://dx.doi.org/10.1063/1.2113407
10.
10. A. Westphalen, A. Schumann, A. Remhof, H. Zabel, T. Last, and U. Kunze, Phys. Rev. B 74, 104417 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104417
11.
11. C. Nam, M. D. Mascaro, B. G. Ng, and C. A. Ross, J. Phys. D: Appl. Phys. 42, 222002 (2009).
http://dx.doi.org/10.1088/0022-3727/42/22/222002
12.
12. C. Nam, B. G. Ng, F. J. Castano, M. D. Mascaro, and C. A. Ross, Appl. Phys. Lett. 94, 082501 (2009).
http://dx.doi.org/10.1063/1.3085971
13.
13. M. H. Park, Y. K. Hong, S. H. Gee, D. W. Erickson, and B. C. Choi, Appl. Phys. Lett. 83, 329 (2003).
http://dx.doi.org/10.1063/1.1592002
14.
14. H. Hu, H. Wang, M. R. McCartney, and D. J. Smith, Phys. Rev. B 73, 153401 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.153401
15.
15. N. Agarwal, D. J. Smith, and M. R. McCartney, J. Appl. Phys. 102, 023911 (2007).
http://dx.doi.org/10.1063/1.2757717
16.
16. K. He, N. Agarwal, D. J. Smith, and M. R. McCartney, Magnetics, IEEE Transactions on 45, 3885 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2024896
17.
17. R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer, Nature 439, 303 (2006).
http://dx.doi.org/10.1038/nature04447
18.
18. X. Ke, J. Li, C. Nisoli, P. E. Lammert, W. McConville, R. F. Wang, V. H. Crespi, and P. Schiffer, Phys. Rev. Lett. 101, 037205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037205
19.
19. J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V. H. Crespi, and P. Schiffer, Phys. Rev. B 81, 092406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.092406
20.
20. M. T. Bryan, D. Atkinson, and R. P. Cowburn, Appl. Phys. Lett. 85, 3510 (2004).
http://dx.doi.org/10.1063/1.1806566
21.
21. S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L. D. Buda, and K. Ounadjela, Phys. Rev. Lett. 86, 1102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1102
22.
22. F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, Phys. Rev. B 67, 184425 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.184425
23.
23. J. Rothman, M. Kläui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J. A. C. Bland, Z. Cui, and R. Speaks, Phys. Rev. Lett. 86, 1098 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1098
24.
24. OOMMF NIST code. http://math.nist.gov/oommf, (2005).
25.
25. M. A. Akhter, D. J. Mapps, Y. Q. M. Tan, A. Petford-Long, and R. Doole, J. Appl. Phys. 81, 4122 (1997).
http://dx.doi.org/10.1063/1.365100
26.
26. R. F. Wang, J. Li, W. McConville, C. Nisoli, X. Ke, J. W. Freeland, V. Rose, M. Grimsditch, P. Lammert, V. H. Crespi, and P. Schiffer, J. Appl. Phys 101, 09J104 (2007).
http://dx.doi.org/10.1063/1.2712528
27.
27. G. D. ChavesO’Flynn, K. Xiao, D. L. Stein, and A. D. Kent, J. Appl. Phys. 103, 07D917 (2008).
http://dx.doi.org/10.1063/1.2832675
28.
28. M. Klaui, C. A. F. Vaz, J. A. C. Bland, W. Wernsdorfer, G. Faini, and E. Cambril, Appl. Phys. Lett. 81, 108 (2002).
http://dx.doi.org/10.1063/1.1490626
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3685590
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Ideal as-designed outline of the gapped nanoring; the inner radius and width of the nanoring are 200 nm and 100 nm respectively and the gap is about 20 degrees. (b) SEM image of one gapped nanoring; the scale bar is 100 nm. MFM images of the remanent states after the application of magnetic field along the (c) positive and (d) negative y axis.

Image of FIG. 2.

Click to view

FIG. 2.

Magnetization states imaged by MFM (top rows) and compared with simulated states (bottom rows) when an increasing external field is applied along (a) the x direction where the four states are imaged at 0, 648, 665, and 913 Oe; (b) along the y direction where the four states are imaged at 0, 166, 494, and 912 Oe. The zero-field images show the vortex state in both cases. Both measurements and simulations show only two distinct states: a vortex state at remanence (H ∼ 0) and an onion state after switching (HH c ); the states below H c maintain the vortex topology by forming a deformed circular loop.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Micromagnetic simulations of switching for a gapped nanoring, using the designed shape (dashed lines) and SEM images (solid lines). The SEM image shape shows a much smaller switching field than the ideal shape, in good agreement with the MFM measurements indicated by the arrows (the width of green lines represents a measurement uncertainty of 16 Oe). (b) Comparison of the simulated switching fields for the designed shape and SEM-derived shape, as well as shapes with only rough edge or rounded ends. The last two simulations show the distinct roles of roughness and roundness in x and y switching.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3685590
2012-02-06
2014-04-23

Abstract

We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy(MFM). The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape) are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3685590.html;jsessionid=ss6iaxuqa3sr.x-aip-live-01?itemId=/content/aip/journal/adva/2/1/10.1063/1.3685590&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetization states and switching in narrow-gapped ferromagnetic nanorings
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3685590
10.1063/1.3685590
SEARCH_EXPAND_ITEM