1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Magnetization states and switching in narrow-gapped ferromagnetic nanorings
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3685590
1.
1. J. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys. 87, 6668 (2000).
http://dx.doi.org/10.1063/1.372805
2.
2. F. Q. Zhu, G. W. Chern, O. Tchernyshyov, X. C. Zhu, J. G. Zhu, and C. L. Chien, Phys. Rev. Lett. 96, 027205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.027205
3.
3. F. Giesen, J. Podbielski, B. Botters, and D. Grundler, Phys. Rev. B 75, 184428 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.184428
4.
4. M. Konoto, T. Yamada, K. Koike, H. Akoh, T. Arima, and Y. Tokura, J. Appl. Phys. 103, 023904 (2008).
http://dx.doi.org/10.1063/1.2828177
5.
5. M. Klaui, J. Rothman, L. Lopez-Diaz, C. A. F. Vaz, J. A. C. Bland, and Z. Cui, Appl. Phys. Lett. 78, 3268 (2001).
http://dx.doi.org/10.1063/1.1361282
6.
6. W. Jung, F. J. Castano, and C. A. Ross, Phys. Rev. Lett. 97, 247209 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.247209
7.
7. C. Nam, M. D. Mascaro, and C. A. Ross, Appl. Phys. Lett. 97, 012505 (2010).
http://dx.doi.org/10.1063/1.3459973
8.
8. F. J. Castaño, C. A. Ross, and A. Eilez, J. Phys. D: Appl. Phys. 36, 2031 (2003).
http://dx.doi.org/10.1088/0022-3727/36/17/301
9.
9. A. Libal, M. Grimsditch, V. Metlushko, P. Vavassori, and B. Janko, J. Appl. Phys. 98, 083904 (2005).
http://dx.doi.org/10.1063/1.2113407
10.
10. A. Westphalen, A. Schumann, A. Remhof, H. Zabel, T. Last, and U. Kunze, Phys. Rev. B 74, 104417 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104417
11.
11. C. Nam, M. D. Mascaro, B. G. Ng, and C. A. Ross, J. Phys. D: Appl. Phys. 42, 222002 (2009).
http://dx.doi.org/10.1088/0022-3727/42/22/222002
12.
12. C. Nam, B. G. Ng, F. J. Castano, M. D. Mascaro, and C. A. Ross, Appl. Phys. Lett. 94, 082501 (2009).
http://dx.doi.org/10.1063/1.3085971
13.
13. M. H. Park, Y. K. Hong, S. H. Gee, D. W. Erickson, and B. C. Choi, Appl. Phys. Lett. 83, 329 (2003).
http://dx.doi.org/10.1063/1.1592002
14.
14. H. Hu, H. Wang, M. R. McCartney, and D. J. Smith, Phys. Rev. B 73, 153401 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.153401
15.
15. N. Agarwal, D. J. Smith, and M. R. McCartney, J. Appl. Phys. 102, 023911 (2007).
http://dx.doi.org/10.1063/1.2757717
16.
16. K. He, N. Agarwal, D. J. Smith, and M. R. McCartney, Magnetics, IEEE Transactions on 45, 3885 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2024896
17.
17. R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and P. Schiffer, Nature 439, 303 (2006).
http://dx.doi.org/10.1038/nature04447
18.
18. X. Ke, J. Li, C. Nisoli, P. E. Lammert, W. McConville, R. F. Wang, V. H. Crespi, and P. Schiffer, Phys. Rev. Lett. 101, 037205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037205
19.
19. J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V. H. Crespi, and P. Schiffer, Phys. Rev. B 81, 092406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.092406
20.
20. M. T. Bryan, D. Atkinson, and R. P. Cowburn, Appl. Phys. Lett. 85, 3510 (2004).
http://dx.doi.org/10.1063/1.1806566
21.
21. S. P. Li, D. Peyrade, M. Natali, A. Lebib, Y. Chen, U. Ebels, L. D. Buda, and K. Ounadjela, Phys. Rev. Lett. 86, 1102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1102
22.
22. F. J. Castaño, C. A. Ross, C. Frandsen, A. Eilez, D. Gil, H. I. Smith, M. Redjdal, and F. B. Humphrey, Phys. Rev. B 67, 184425 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.184425
23.
23. J. Rothman, M. Kläui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J. A. C. Bland, Z. Cui, and R. Speaks, Phys. Rev. Lett. 86, 1098 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1098
24.
24. OOMMF NIST code. http://math.nist.gov/oommf, (2005).
25.
25. M. A. Akhter, D. J. Mapps, Y. Q. M. Tan, A. Petford-Long, and R. Doole, J. Appl. Phys. 81, 4122 (1997).
http://dx.doi.org/10.1063/1.365100
26.
26. R. F. Wang, J. Li, W. McConville, C. Nisoli, X. Ke, J. W. Freeland, V. Rose, M. Grimsditch, P. Lammert, V. H. Crespi, and P. Schiffer, J. Appl. Phys 101, 09J104 (2007).
http://dx.doi.org/10.1063/1.2712528
27.
27. G. D. ChavesO’Flynn, K. Xiao, D. L. Stein, and A. D. Kent, J. Appl. Phys. 103, 07D917 (2008).
http://dx.doi.org/10.1063/1.2832675
28.
28. M. Klaui, C. A. F. Vaz, J. A. C. Bland, W. Wernsdorfer, G. Faini, and E. Cambril, Appl. Phys. Lett. 81, 108 (2002).
http://dx.doi.org/10.1063/1.1490626
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3685590
Loading
/content/aip/journal/adva/2/1/10.1063/1.3685590
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3685590
2012-02-06
2014-10-01

Abstract

We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy(MFM). The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape) are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3685590.html;jsessionid=80e4fjhem7mm1.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3685590&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetization states and switching in narrow-gapped ferromagnetic nanorings
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3685590
10.1063/1.3685590
SEARCH_EXPAND_ITEM