Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. D. Valle, R. Gutirrez, C. Tejedor, G. Cuniberti, Nat. Nanotechnol. 2, 176 (2007).
2. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton and L. Venkataraman, Nat. Nanotechnol. 4, 230 (2009).
3. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 122, 3015 (2000).
4. R. M. Metzger, Chem. Rev. 103, 3803 (2003).
5. A. R. Rocha, V. M. Garca-surez, S. W. Bailey, C. J. Lambert, J. Ferrer and S. Sanvito, Nat. Mater. 4, 335 (2005).
6. J. He, K. Q. Chen, Z. Q. Fan, L. M. Tang, W. P. Hu, Appl. Phys. Lett. 97, 193305 (2010).
7. Y. S. Fu, S. H. Ji, X. Chen, X. C. Ma, R. Wu, C. C. Wang, W. H. Duan, X. H. Qiu, B. Sun, P. Zhang, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 99, 256601 (2007).
8. Q. M. Yan, B. Huang, J. Yu, F. W. Zheng, J. zang, J. Wu, B. L. Gu, F. Liu, and W. H. Duan, Nano Lett. 7 1469 (2007).
9. C. A. Di, Y. Q. Liu, G. Yu, and D. B. Zhu, Acc. Chem. Res. 42, 1573 (2009).
10. Y. L. Guo, G. Yu, Y. Q. Liu, Adv. Mater. 22, 4427 (2010).
11. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999);
11.J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000).
12. M. Q. Long, K. Q. Chen, L. L. Wang, B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 233512 (2007).
13. L. Chen, Z. P. Hu, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, J. G. Hou, Phys. Rev. Lett. 99, 146803 (2007).
14. X. H. Zheng, W. C. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, ACS Nano 4, 7205 (2011).
15. Q. H. Liu, G. F. Luo, R. Qin, H. Li, X. Yan, C. Y. Xu, L. Lai, J. Zhou, S. M. Hou, E. G. Wang, Z. X. Gao, and J. Lu, Phys. Rev. B 83, 155442 (2011).
16. M. Leijnse, W. Sun, M. B. Nielsen, P. Hedegard, and K. Flensberg, J. Chem. Phys. 134, 104107 (2011).
17. Y. Ren, K. Q. Chen, J. He, L. M. Tang, A. L. Pan, B. S. Zou, and Y. Zhang, Appl. Phys. Lett. 97, 103506 (2010).
18. X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, and B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 133511 (2007).
19. X. J. Liu, Z. An, Org. Electron. 12, 1352 (2011).
20. I. W. Lyo and P. Avouris, Science 245, 1369 (1989).
21. T. Akitaya, A. Seno, T. Nakai, N. Hazemoto, S. Murata, and K. Yoshikawa, Biomacromolecules 8, 273 (2007).
22. C. G. Zeng, H. Q. Wang, B. Wang, J. L. Yang, J. G. Hou, Appl. Phys. Lett. 77, 3595 (2000).
23. J. Taylor1, H. Guo, and J. Wang, Phys. Rev. B 63, 121104R (2001).
24. J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Phys. Rev. B 64, 115411 (2001).
25. T. Ono and K. Hirose, Phys. Rev. Lett. 98, 026804 (2007).
26. Z. Q. Fan, K. Q. Chen, Q. Wan, B. S. Zou, W. H. Duan, Z. Shuai, Appl. Phys. Lett. 92, 263304 (2008).
27. X. H. Zheng, X. L. Wang, Z. X. Dai, and Z. Zeng, J. Chem. Phys. 134, 044708 (2011).
28. X. F. Guo, J. P. Small, J. E. Klare, Y. L. Wang, M. S. Purewal, I. W. Tam, B. H. Hong, R. Caldwell, L. M. Huang, S. OBrien, J. M. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim, C. Nuckolls, Science 311, 356 (2006).
29. W. Y. Kim, S. K. Kwon, and K. S. Kim, Phys. Rev. B 76, 033415 (2007).
30. A. Feldman, M. Steigerwald, X. F. Guo, and C. Nuckolls, Acc. Chem. Res. 41, 1731 (2008).
31. J. Taylor, H. Guo, and J. Wang, Phys. Rev. 63, 245407 (2001).
32. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002).
33. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
34. M. Bttiker, R. Landauer, Phys. Rev. B 31 6207 (1985).
35. K. Stokbro, J. Phys. Chem. C 114, 20461 (2010).
36. H. Geng, S. Yin, K. Q. Chen, Z. Shuai, J. Phys. Chem. B 109, 25 (2005).
37. Y. Tsuji, A. Staykov, and K. Yoshizawa, J. Am. Chem. Soc. 133, 5955 (2011).

Data & Media loading...


Article metrics loading...



By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transportproperties of C 60 based electronic device with different intermolecular interactions. It is found that the electronic transportproperties vary with the types of the interaction between two C 60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd