Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3685777
1.
1. M. D. Valle, R. Gutirrez, C. Tejedor, G. Cuniberti, Nat. Nanotechnol. 2, 176 (2007).
http://dx.doi.org/10.1038/nnano.2007.38
2.
2. S. Y. Quek, M. Kamenetska, M. L. Steigerwald, H. J. Choi, S. G. Louie, M. S. Hybertsen, J. B. Neaton and L. Venkataraman, Nat. Nanotechnol. 4, 230 (2009).
http://dx.doi.org/10.1038/nnano.2009.10
3.
3. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 122, 3015 (2000).
http://dx.doi.org/10.1021/ja992936h
4.
4. R. M. Metzger, Chem. Rev. 103, 3803 (2003).
http://dx.doi.org/10.1021/cr020413d
5.
5. A. R. Rocha, V. M. Garca-surez, S. W. Bailey, C. J. Lambert, J. Ferrer and S. Sanvito, Nat. Mater. 4, 335 (2005).
http://dx.doi.org/10.1038/nmat1349
6.
6. J. He, K. Q. Chen, Z. Q. Fan, L. M. Tang, W. P. Hu, Appl. Phys. Lett. 97, 193305 (2010).
http://dx.doi.org/10.1063/1.3515921
7.
7. Y. S. Fu, S. H. Ji, X. Chen, X. C. Ma, R. Wu, C. C. Wang, W. H. Duan, X. H. Qiu, B. Sun, P. Zhang, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 99, 256601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.256601
8.
8. Q. M. Yan, B. Huang, J. Yu, F. W. Zheng, J. zang, J. Wu, B. L. Gu, F. Liu, and W. H. Duan, Nano Lett. 7 1469 (2007).
http://dx.doi.org/10.1021/nl070133j
9.
9. C. A. Di, Y. Q. Liu, G. Yu, and D. B. Zhu, Acc. Chem. Res. 42, 1573 (2009).
http://dx.doi.org/10.1021/ar9000873
10.
10. Y. L. Guo, G. Yu, Y. Q. Liu, Adv. Mater. 22, 4427 (2010).
http://dx.doi.org/10.1002/adma.201000740
11.
11. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999);
http://dx.doi.org/10.1126/science.286.5444.1550
11.J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000).
http://dx.doi.org/10.1063/1.1289650
12.
12. M. Q. Long, K. Q. Chen, L. L. Wang, B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 233512 (2007).
http://dx.doi.org/10.1063/1.2822423
13.
13. L. Chen, Z. P. Hu, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, J. G. Hou, Phys. Rev. Lett. 99, 146803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.146803
14.
14. X. H. Zheng, W. C. Lu, T. A. Abtew, V. Meunier, and J. Bernholc, ACS Nano 4, 7205 (2011).
http://dx.doi.org/10.1021/nn101902r
15.
15. Q. H. Liu, G. F. Luo, R. Qin, H. Li, X. Yan, C. Y. Xu, L. Lai, J. Zhou, S. M. Hou, E. G. Wang, Z. X. Gao, and J. Lu, Phys. Rev. B 83, 155442 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155442
16.
16. M. Leijnse, W. Sun, M. B. Nielsen, P. Hedegard, and K. Flensberg, J. Chem. Phys. 134, 104107 (2011).
http://dx.doi.org/10.1063/1.3560474
17.
17. Y. Ren, K. Q. Chen, J. He, L. M. Tang, A. L. Pan, B. S. Zou, and Y. Zhang, Appl. Phys. Lett. 97, 103506 (2010).
http://dx.doi.org/10.1063/1.3488822
18.
18. X. F. Li, K. Q. Chen, L. L. Wang, M. Q. Long, and B. S. Zou, and Z. Shuai, Appl. Phys. Lett. 91, 133511 (2007).
http://dx.doi.org/10.1063/1.2790839
19.
19. X. J. Liu, Z. An, Org. Electron. 12, 1352 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.007
20.
20. I. W. Lyo and P. Avouris, Science 245, 1369 (1989).
http://dx.doi.org/10.1126/science.245.4924.1369
21.
21. T. Akitaya, A. Seno, T. Nakai, N. Hazemoto, S. Murata, and K. Yoshikawa, Biomacromolecules 8, 273 (2007).
http://dx.doi.org/10.1021/bm060634j
22.
22. C. G. Zeng, H. Q. Wang, B. Wang, J. L. Yang, J. G. Hou, Appl. Phys. Lett. 77, 3595 (2000).
http://dx.doi.org/10.1063/1.1328773
23.
23. J. Taylor1, H. Guo, and J. Wang, Phys. Rev. B 63, 121104R (2001).
http://dx.doi.org/10.1103/PhysRevB.63.121104
24.
24. J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Phys. Rev. B 64, 115411 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.115411
25.
25. T. Ono and K. Hirose, Phys. Rev. Lett. 98, 026804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.026804
26.
26. Z. Q. Fan, K. Q. Chen, Q. Wan, B. S. Zou, W. H. Duan, Z. Shuai, Appl. Phys. Lett. 92, 263304 (2008).
http://dx.doi.org/10.1063/1.2952493
27.
27. X. H. Zheng, X. L. Wang, Z. X. Dai, and Z. Zeng, J. Chem. Phys. 134, 044708 (2011).
http://dx.doi.org/10.1063/1.3548883
28.
28. X. F. Guo, J. P. Small, J. E. Klare, Y. L. Wang, M. S. Purewal, I. W. Tam, B. H. Hong, R. Caldwell, L. M. Huang, S. OBrien, J. M. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim, C. Nuckolls, Science 311, 356 (2006).
http://dx.doi.org/10.1126/science.1120986
29.
29. W. Y. Kim, S. K. Kwon, and K. S. Kim, Phys. Rev. B 76, 033415 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.033415
30.
30. A. Feldman, M. Steigerwald, X. F. Guo, and C. Nuckolls, Acc. Chem. Res. 41, 1731 (2008).
http://dx.doi.org/10.1021/ar8000266
31.
31. J. Taylor, H. Guo, and J. Wang, Phys. Rev. 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
32.
32. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
33.
33. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
34. M. Bttiker, R. Landauer, Phys. Rev. B 31 6207 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6207
35.
35. K. Stokbro, J. Phys. Chem. C 114, 20461 (2010).
http://dx.doi.org/10.1021/jp104811r
36.
36. H. Geng, S. Yin, K. Q. Chen, Z. Shuai, J. Phys. Chem. B 109, 25 (2005).
37.
37. Y. Tsuji, A. Staykov, and K. Yoshizawa, J. Am. Chem. Soc. 133, 5955 (2011).
http://dx.doi.org/10.1021/ja111021e
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3685777
Loading
/content/aip/journal/adva/2/1/10.1063/1.3685777
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3685777
2012-02-06
2016-09-25

Abstract

By means of the nonequilibrium Green's functions and the density functional theory, we have investigated the electronic transportproperties of C 60 based electronic device with different intermolecular interactions. It is found that the electronic transportproperties vary with the types of the interaction between two C 60 molecules. A fast electrical switching behavior based on negative differential resistance has been found when two molecules are coupled by the weak π − π interaction. Compared to the solid bonding, the weak interaction is found to induce resonant tunneling, which is responsible for the fast response to the applied electric field and hence the velocity of switching.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3685777.html;jsessionid=cL7TPsfxKn1TQVnGy47bQQFx.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3685777&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3685777&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3685777'
Right1,Right2,Right3,