Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, New York, 1997).
2. J. Smith and H. P. J. Wijn, Ferrites, Philips Technical Library, (Eindhoven-Holland, 1965).
3. V. G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K. S. Ziemer, N. X. Sun, C. Vittoria, J. Appl. Phys., 99, 08M911 (2006).
4. P. P. Hankare, R. P. Patil, K. M. Garadkar, R. Sasikala and B. K. Chougule, Mater. Res. Bull, 46, 447 (2011).
5. J. Kulikowski, A. Bienkowski, J. Magn. Magn. Mater. 26, 297 (1982).
6. Ge-Liang Sun, Jian-Bao Li, Jing Jing Sun and Xiao Zhan Yang, J. Magn. Magn. Mater. 281, 173 (2004).
7. N. Rezlescu, E. Rezlescu, C. Pasnicu and M. L. Craus, J. Phys.: Condens. Matter 6, 5707 (1994).
8. O. M. Hemeda, M. Z. Said and M. M. Barakat, J. Magn. Magn. Mater. 224, 132 (2001).
9. Fuxiang Cheng, Chunsheng Liao, Junfeng Kuang, Zhigang Xu, Chunhua Yan, Liangyao Chen, Haibin Zhao, and Zhu Liu, J. Appl. Phys. 85, 2782 (1999).
10. K. Kamala Bharathi, K. Balamurugan, P. N. Santhosh, M. Pattabiraman, and G. Markandeyulu, Phys. Rev. B 77, 172401 (2008).
11. K. Kamala Bharathi and G. Markandeyulu, J. Appl. Phys. 103, 07E309 (2008).
12. B. P. Jacob, S. Thankachan, S. Xavier and E. M. Mohammed, Phys. Scr. 84, 045702 (6pp) (2011).
13. Y. Q. Li, Y. Huang, S. H. Qi, F. F. Niu and L. Niu, J. Magn. Magn. Mater. 323, 2224 (2011).
14. H. Xiaogu, C. Jiao, W. Lixi, and Z. Qitu, Rare Metals, 30, 44 (2011).
15. S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange, and K. M. Jadhav, J. Appl. Phys. 110, 13914 (2011).
16. Jitendra Pal Singh, Gagan Dixit, R. C. Srivastava, H. M. Agrawal and K. Asokan, J. Phys. D: Appl. Phys. 44, 435306 (6pp) (2011).
17. T. J. Shinde, A. B. Gadkari and P. N. Vasambekar, J Mater Sci: Mater Electron, DOI: 10.1007/s10854-011-0474-y.
18. Muthafar F. Al–Hilli, Sean Li and Kassim S. Kassim, Mat. Chem. Phys. 128, 127 (2011).
19. T. J. Shinde, A. B. Gadkari and P. N. Vasambekar, J. Alloys Compd., 513, 80 (2012).
20. K. Kamala Bharathi, M. Noor-A-Alam, R. S. Vemuri and C. V. Ramana, RSC Adv. 2, 941 (2012).
21. K. Kamala Bharathi, G. Markandeyulu and C. V. Ramana, Electrochem. Solid-State Lett., 13, G98 (2010).
22. T. Kato, H. Mikami, and S. Noguchi, J. Appl. Phys., 110, 123901 (2011).
23. K. Kamala Bharathi, G. Markandeyulu and C. V. Ramana, J. Phys. Chem. C, 115, 554 (2011).
24. H. S. Mund, S. Tiwari, J. Sahariya, M. Itou, Y. Sakurai, and B. L. Ahuja, J. Appl. Phys., 110, 073914 (2011).
25. K. Kamala Bharathi, R. S. Vemuri and C. V. Ramana, Chem. Phys. Lett., 504, 202 (2011).
26. S. M. Chavan, M. K. Babrekar, S. S. More and K. M. Jadhav, J. Alloys Compd., 507, 21 (2010).
27. K. Kamala Bharathi, G. Markandeyulu and C. V. Ramana, J. Electrochem. Soc., 158, G71 (2011).
28. E. A. Schultz-Sikma, H. M. Joshi, Qing Ma, K. W. MacRenaris, A. L. Eckermann, V. P. Dravid, and T. J. Meade, Chem. Mater., 23, 2657 (2011).
29. K. Kamala Bharathi and C. V. Ramana, J. Mater. Res., 26, 584 (2011).
30. R. S. Devan, Y. D. Kolekar and B. K. Chougule, J. Phys.: Condens. Matter. 18, 9809 (2006).
31. Y. Q. Chu, Z.-W. Fu and Q.-Z. Qin, Electrochim. Acta, 49, 4915 (2004).
32. Y. N. Nu Li, Y. Q. Chu and Q. Z. Qin, J. Electrochem. Soc., 151, A1077 (2004).
33. P. Lavela and J. L. Tirado, Journal of power sources, 172, 379 (2007).
34. S. Ito, K. Nakaoka, M. Kawamura, K. Ui, K. Fujimoto and N. Koura, Journal of Power Sources, 146, 319 (2005).
35. C. H. Kim, Y. Myung, Y. J. Cho, H. S. Kim, S. H. Park, J. Park, J. Y. Kim, B. Kim, J. Phys. Chem. C, 113, 7085 (2009).
36. C. H. Peng, H. W. Wang, M. Z. S. Shih-Wei Kanb, Y. M. Wei and S. Y. Chen, J. Magn. Magn. Mater., 284, 113 (2004).
37. S. E. Ziemniak, L. M. Anovitz, R. A. Castelli and W. D. Porter, J. Phys. Chem. Solids, 68, 10 (2007).
38. S. S. Ata-Allah and M. Kaiser, J. Alloys Compd., 471, 303 (2009).
39. R. V. Mangalaraja, S. Ananthakumar, P. Manohar and F. D. Gnanam, J. Magn. Magn. Mater., 253, 56 (2002).
40. J. P. Zhou, H. C. He, Z. Shi and C. W. Nan, Appl. Phys. Lett., 88, 013111 (2006).
41. R. Hochschild and H. Fuess, J. Mater. Chem., 10, 539 (2000).
42. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn (Oxford: Clarendon, 1979).
43. R. S. Vemuri, K. Kamala Bharathi, S. K. Gullapalli, C. V. Ramana, ACS Appl. Mater. Interfaces, 2, 2623 (2010).

Data & Media loading...


Article metrics loading...



The structure and electrical characteristics of Gd dopedNiferrite materials, namely NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4, are reported to demonstrate their improved electrical properties compared to that of pure NiFe2O4. NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds crystallize in the cubic inverse spinel phase with a very small amount of GdFeO3 additional phase while pure NiFe2O4crystallize in inverse spinel phase without any impurity phase. The back scattered electron imaging analysis indicate the primary and secondary formation in NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds. Atomic force microscopy measurements indicate that the bulk grains are ∼2-5 micron size while the grain boundaries are thin compared to bulk grains. Impedance spectroscopic analysis at different temperature indicates the different relaxation mechanisms and their variation with temperature, bulk grain and grain-boundary contributions to the electrical conductivity (Rg) and capacitance (Cg) of these materials. The conductivity in pure NiFeO4 is found to be predominantly due to intrinsic bulk contribution (Rg=213 kΩ and Cg=4.5 x 10-8 F). In the case of NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds, grain and grain-boundary contributions to the conductivity are clearly observed. The DC conductivity values (at 300 K) of NiFe2O4, NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds are found to be 1.06 x 10-7 Ω-1 cm-1, 5.73 x 10-8 Ω-1 cm-1 and 1.28 x 10-8 Ω-1 cm-1 respectively.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd