Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3687219
1.
1. S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, New York, 1997).
2.
2. J. Smith and H. P. J. Wijn, Ferrites, Philips Technical Library, (Eindhoven-Holland, 1965).
3.
3. V. G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K. S. Ziemer, N. X. Sun, C. Vittoria, J. Appl. Phys., 99, 08M911 (2006).
http://dx.doi.org/10.1063/1.2165145
4.
4. P. P. Hankare, R. P. Patil, K. M. Garadkar, R. Sasikala and B. K. Chougule, Mater. Res. Bull, 46, 447 (2011).
http://dx.doi.org/10.1016/j.materresbull.2010.11.026
5.
5. J. Kulikowski, A. Bienkowski, J. Magn. Magn. Mater. 26, 297 (1982).
http://dx.doi.org/10.1016/0304-8853(82)90177-9
6.
6. Ge-Liang Sun, Jian-Bao Li, Jing Jing Sun and Xiao Zhan Yang, J. Magn. Magn. Mater. 281, 173 (2004).
http://dx.doi.org/10.1016/j.jmmm.2004.04.099
7.
7. N. Rezlescu, E. Rezlescu, C. Pasnicu and M. L. Craus, J. Phys.: Condens. Matter 6, 5707 (1994).
http://dx.doi.org/10.1088/0953-8984/6/29/013
8.
8. O. M. Hemeda, M. Z. Said and M. M. Barakat, J. Magn. Magn. Mater. 224, 132 (2001).
http://dx.doi.org/10.1016/S0304-8853(00)00578-3
9.
9. Fuxiang Cheng, Chunsheng Liao, Junfeng Kuang, Zhigang Xu, Chunhua Yan, Liangyao Chen, Haibin Zhao, and Zhu Liu, J. Appl. Phys. 85, 2782 (1999).
http://dx.doi.org/10.1063/1.369594
10.
10. K. Kamala Bharathi, K. Balamurugan, P. N. Santhosh, M. Pattabiraman, and G. Markandeyulu, Phys. Rev. B 77, 172401 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.172401
11.
11. K. Kamala Bharathi and G. Markandeyulu, J. Appl. Phys. 103, 07E309 (2008).
http://dx.doi.org/10.1063/1.2839281
12.
12. B. P. Jacob, S. Thankachan, S. Xavier and E. M. Mohammed, Phys. Scr. 84, 045702 (6pp) (2011).
http://dx.doi.org/10.1088/0031-8949/84/04/045702
13.
13. Y. Q. Li, Y. Huang, S. H. Qi, F. F. Niu and L. Niu, J. Magn. Magn. Mater. 323, 2224 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.03.040
14.
14. H. Xiaogu, C. Jiao, W. Lixi, and Z. Qitu, Rare Metals, 30, 44 (2011).
http://dx.doi.org/10.1007/s12598-011-0194-8
15.
15. S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange, and K. M. Jadhav, J. Appl. Phys. 110, 13914 (2011).
http://dx.doi.org/10.1063/1.3603004
16.
16. Jitendra Pal Singh, Gagan Dixit, R. C. Srivastava, H. M. Agrawal and K. Asokan, J. Phys. D: Appl. Phys. 44, 435306 (6pp) (2011).
http://dx.doi.org/10.1088/0022-3727/44/43/435306
17.
17. T. J. Shinde, A. B. Gadkari and P. N. Vasambekar, J Mater Sci: Mater Electron, DOI: 10.1007/s10854-011-0474-y.
http://dx.doi.org/10.1007/s10854-011-0474-y
18.
18. Muthafar F. Al–Hilli, Sean Li and Kassim S. Kassim, Mat. Chem. Phys. 128, 127 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.02.064
19.
19. T. J. Shinde, A. B. Gadkari and P. N. Vasambekar, J. Alloys Compd., 513, 80 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.10.001
20.
20. K. Kamala Bharathi, M. Noor-A-Alam, R. S. Vemuri and C. V. Ramana, RSC Adv. 2, 941 (2012).
http://dx.doi.org/10.1039/c1ra00161b
21.
21. K. Kamala Bharathi, G. Markandeyulu and C. V. Ramana, Electrochem. Solid-State Lett., 13, G98 (2010).
http://dx.doi.org/10.1149/1.3479553
22.
22. T. Kato, H. Mikami, and S. Noguchi, J. Appl. Phys., 110, 123901 (2011).
http://dx.doi.org/10.1063/1.3669369
23.
23. K. Kamala Bharathi, G. Markandeyulu and C. V. Ramana, J. Phys. Chem. C, 115, 554 (2011).
http://dx.doi.org/10.1021/jp1060864
24.
24. H. S. Mund, S. Tiwari, J. Sahariya, M. Itou, Y. Sakurai, and B. L. Ahuja, J. Appl. Phys., 110, 073914 (2011).
http://dx.doi.org/10.1063/1.3650251
25.
25. K. Kamala Bharathi, R. S. Vemuri and C. V. Ramana, Chem. Phys. Lett., 504, 202 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.02.003
26.
26. S. M. Chavan, M. K. Babrekar, S. S. More and K. M. Jadhav, J. Alloys Compd., 507, 21 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.07.171
27.
27. K. Kamala Bharathi, G. Markandeyulu and C. V. Ramana, J. Electrochem. Soc., 158, G71 (2011).
http://dx.doi.org/10.1149/1.3534800
28.
28. E. A. Schultz-Sikma, H. M. Joshi, Qing Ma, K. W. MacRenaris, A. L. Eckermann, V. P. Dravid, and T. J. Meade, Chem. Mater., 23, 2657 (2011).
http://dx.doi.org/10.1021/cm200509g
29.
29. K. Kamala Bharathi and C. V. Ramana, J. Mater. Res., 26, 584 (2011).
http://dx.doi.org/10.1557/jmr.2010.37
30.
30. R. S. Devan, Y. D. Kolekar and B. K. Chougule, J. Phys.: Condens. Matter. 18, 9809 (2006).
http://dx.doi.org/10.1088/0953-8984/18/43/004
31.
31. Y. Q. Chu, Z.-W. Fu and Q.-Z. Qin, Electrochim. Acta, 49, 4915 (2004).
http://dx.doi.org/10.1016/j.electacta.2004.06.012
32.
32. Y. N. Nu Li, Y. Q. Chu and Q. Z. Qin, J. Electrochem. Soc., 151, A1077 (2004).
http://dx.doi.org/10.1149/1.1760576
33.
33. P. Lavela and J. L. Tirado, Journal of power sources, 172, 379 (2007).
http://dx.doi.org/10.1016/j.jpowsour.2007.07.055
34.
34. S. Ito, K. Nakaoka, M. Kawamura, K. Ui, K. Fujimoto and N. Koura, Journal of Power Sources, 146, 319 (2005).
http://dx.doi.org/10.1016/j.jpowsour.2005.03.130
35.
35. C. H. Kim, Y. Myung, Y. J. Cho, H. S. Kim, S. H. Park, J. Park, J. Y. Kim, B. Kim, J. Phys. Chem. C, 113, 7085 (2009).
http://dx.doi.org/10.1021/jp900165c
36.
36. C. H. Peng, H. W. Wang, M. Z. S. Shih-Wei Kanb, Y. M. Wei and S. Y. Chen, J. Magn. Magn. Mater., 284, 113 (2004).
http://dx.doi.org/10.1016/j.jmmm.2004.06.026
37.
37. S. E. Ziemniak, L. M. Anovitz, R. A. Castelli and W. D. Porter, J. Phys. Chem. Solids, 68, 10 (2007).
http://dx.doi.org/10.1016/j.jpcs.2006.07.015
38.
38. S. S. Ata-Allah and M. Kaiser, J. Alloys Compd., 471, 303 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.03.117
39.
39. R. V. Mangalaraja, S. Ananthakumar, P. Manohar and F. D. Gnanam, J. Magn. Magn. Mater., 253, 56 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00413-4
40.
40. J. P. Zhou, H. C. He, Z. Shi and C. W. Nan, Appl. Phys. Lett., 88, 013111 (2006).
http://dx.doi.org/10.1063/1.2162262
41.
41. R. Hochschild and H. Fuess, J. Mater. Chem., 10, 539 (2000).
http://dx.doi.org/10.1039/a905583e
42.
42. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn (Oxford: Clarendon, 1979).
43.
43. R. S. Vemuri, K. Kamala Bharathi, S. K. Gullapalli, C. V. Ramana, ACS Appl. Mater. Interfaces, 2, 2623 (2010).
http://dx.doi.org/10.1021/am1004514
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3687219
Loading
/content/aip/journal/adva/2/1/10.1063/1.3687219
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3687219
2012-02-08
2016-12-04

Abstract

The structure and electrical characteristics of Gd dopedNiferrite materials, namely NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4, are reported to demonstrate their improved electrical properties compared to that of pure NiFe2O4. NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds crystallize in the cubic inverse spinel phase with a very small amount of GdFeO3 additional phase while pure NiFe2O4crystallize in inverse spinel phase without any impurity phase. The back scattered electron imaging analysis indicate the primary and secondary formation in NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds. Atomic force microscopy measurements indicate that the bulk grains are ∼2-5 micron size while the grain boundaries are thin compared to bulk grains. Impedance spectroscopic analysis at different temperature indicates the different relaxation mechanisms and their variation with temperature, bulk grain and grain-boundary contributions to the electrical conductivity (Rg) and capacitance (Cg) of these materials. The conductivity in pure NiFeO4 is found to be predominantly due to intrinsic bulk contribution (Rg=213 kΩ and Cg=4.5 x 10-8 F). In the case of NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds, grain and grain-boundary contributions to the conductivity are clearly observed. The DC conductivity values (at 300 K) of NiFe2O4, NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds are found to be 1.06 x 10-7 Ω-1 cm-1, 5.73 x 10-8 Ω-1 cm-1 and 1.28 x 10-8 Ω-1 cm-1 respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3687219.html;jsessionid=sGfunumdNjt7QAFrm470wB06.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3687219&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3687219&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3687219'
Right1,Right2,Right3,