1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Triboelectric charging of insulating polymers–some new perspectives
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3687233
1.
1. D. J. Lacks and R. M. Sankaran, J. Phys. D: Appl. Phys. 44, 453001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/45/453001
2.
2. T. A. Jadwin, A. N. Mutz and B. J. Rubin, U. S. Patent 3,893,935 (1975).
3.
3. L. T Weng and C. M Chan, Proc. 12th European Conference on Applications of Surface and Interface Analysis, Brussels, Belgium (2007).
4.
4. H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B. A. Grzybowski, www.sciencexpress.org 1 (2011).
5.
5. A. F. Diaz and R. M. Felix-Navarro, J. Electrostat. 62, 277 (2004).
http://dx.doi.org/10.1016/j.elstat.2004.05.005
6.
6. L. S. McCarty and G. M. Whitesides, Angew. Chem. Int. Ed. 27, No. 12, 21882207 (2008).
http://dx.doi.org/10.1002/anie.200701812
7.
7. M. M. Apodaca, P. J. Wesson, K. J. M. Bishop, M. A. Ratner, B. A. Grzybowski, Angew. Chem. Int. Ed. 49, 946949 (2010).
8.
8. J. Lowell and W. S. Truscott, J. Phys. D: Appl. Phys. 19, 12731280 (1986).
http://dx.doi.org/10.1088/0022-3727/19/7/017
9.
9. J. Lowell and W. S. Truscott, J. Phys. D: Appl. Phys. 19, 12811298 (1986).
http://dx.doi.org/10.1088/0022-3727/19/7/018
10.
10. T. Shinbrot, T. S. Komatsu, Q. Zhao, EPL 83, 24004 (2008).
http://dx.doi.org/10.1209/0295-5075/83/24004
11.
11. P. S. H. Henry, Br. J. Appl. Phys. 4, S31 (1953).
http://dx.doi.org/10.1088/0508-3443/4/S2/313
12.
12. R. Pham, R. C. Virnelson, R. M. Sankaran, D. J. Lacks, J. Electrostatics 69, Issue 5, 456460 (2011).
http://dx.doi.org/10.1016/j.elstat.2011.05.003
13.
13. D. J. Lacks and A. Levandovsky, J. Electrostatics 65, 107112 (2007).
http://dx.doi.org/10.1016/j.elstat.2006.07.010
14.
14. D. J. Lacks, N. Duff, Phys. Rev. Lett. 100, 188305188309 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.188305
15.
15. K. M. Forward, D. J. Lacks and R. M. Sankaran, J. Electrostat. 67, 178183 (2009).
http://dx.doi.org/10.1016/j.elstat.2008.12.002
16.
16. K. M. Forward, D. J. Lacks, Phys. Rev. Lett. 102, 028001028005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.028001
17.
17. H. Zhao, G. S. P. Castle, I. I. Inculet, A. G. Bailey, IEEE Trans. On Ind. Appl. 39, 612618 (2003).
http://dx.doi.org/10.1109/TIA.2003.810663
18.
18. H. Zhao, G. S. P. Castle, I. I. Inculet, J. Electrostat. 55, 261278 (2002).
19.
19. J. F. Kok and D. J. Lacks, Phys. Rev. E 79, 051304 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.051304
20.
20. C. B. Duke, Surf. Sci. 70, 674 (1978).
http://dx.doi.org/10.1016/0039-6028(78)90438-7
21.
21. W. R. Harper, “Contact and Frictional Electrification,” Oxford University Press (1967).
22.
22. D. K. Davies, Advanced Static Electrification 1, 10, (1970).
23.
23. C. B. Duke and T. J. Fabish, J. Appl. Phys. 49, Iss.1, 315 (1978).
http://dx.doi.org/10.1063/1.324388
24.
24. J. Lowell, A,C. Rose-Innes, Adv. Phys. 29, 9471023 (1980).
http://dx.doi.org/10.1080/00018738000101466
25.
25. S. J. Vella, X. Chen, S. W. Thomas, X. Zhao, Z. Suo, G. M. Whitesides, J. Phys. Chem. C 114, No. 48, 2088520895 (2010).
http://dx.doi.org/10.1021/jp107883u
26.
26. A. F. Diaz, J. Guay, IBM J. Res. Dev. 37, 249 (1993).
http://dx.doi.org/10.1147/rd.372.0249
27.
27. T. J. Fabish, Critical Reviews Solid State and Materials Sciences 8, Issue 4, 383420 (1979).
http://dx.doi.org/10.1080/10408437908243627
28.
28. D. K. Davies, J. Phys. D: Appl. Phys., Ser. 2 2, 15331537 (1969).
http://dx.doi.org/10.1088/0022-3727/2/11/307
29.
29. J. Lowell, J. Phys. D: Appl. Phys. 9, No. 11, 1571 (1976).
http://dx.doi.org/10.1088/0022-3727/9/11/006
30.
30. W. R. Harper, “Contact and Frictional Electrification,” Laplacian, Morgan Hill (1998).
31.
31. A. R. Akande and J. Lowell, J. Phys. D: Appl. Phys. 20, 565 (1987).
http://dx.doi.org/10.1088/0022-3727/20/5/002
32.
32. A. R. Akande, Proceedings Electrostatics Society of America Conference, Boston (2009).
33.
33. C. Liu and A. J. Bard, Nature Materials 7, 505509 (2008).
http://dx.doi.org/10.1038/nmat2160
34.
34. C. Liu and A. J. Bard, Chem. Phys. Lett. 480, Iss. 4-6, 145156 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.08.045
35.
35. C. Liu and A. J. Bard, Chem. Phys. Lett. 485, Iss. 1-3, 231234 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.12.009
36.
36. T. F. Otero, Nature Materials 7, 429430 (2008).
http://dx.doi.org/10.1038/nmat2188
37.
37. S. Piperno, H. Cohen, T. Bendokov, M. Lahav, I. Lubomirsky, Proc. ESA Annual Meeting on Electrostatics (2011).
38.
38. N. Vandencasteele, D. Merche and F. Reniers, Surf. Interface Anal. 38, 526530 (2006).
http://dx.doi.org/10.1002/sia.2255
39.
39. R. Baur and H-T Macholdt, J. Electrostatics 40-41, 621626 (1997).
http://dx.doi.org/10.1016/S0304-3886(97)00061-2
40.
40. K.-Y. Law, I. W. Tarnawskyj, D. Salamida, T. Debies, Chem. Mater. 7, No. 11, 20902095 (1995).
http://dx.doi.org/10.1021/cm00059a016
41.
41. K.-Y. Law, I. W. Tarnawskyj, D. Salamida, T. Debies, Recent Progress in Toner Technologies. Springfield, VA: IS&T, 165 (1997).
42.
42. M. W. Williams, IEEE Transactions on Industry Applications 47, No. 3, 10931099 (2011).
http://dx.doi.org/10.1109/TIA.2011.2126032
43.
43. M. W. Williams, Proceedings of Electrostatics Society of America Conference, Cleveland, OH (2011).
44.
44. S. Pence, V. J. Novotny, A. F. Diaz, Langmuir 10, No. 2, 592596 (1994).
http://dx.doi.org/10.1021/la00014a042
45.
45. H. T. Baytekin, B. Baytekin, S. Soh, B. A. Grzybowski, Angew. Chem. Int. Ed. 50, 67666770 (2011).
http://dx.doi.org/10.1002/anie.201008051
46.
46. J. Lowell, J. Phys. D: Appl. Phys. 19, 95 (1986).
http://dx.doi.org/10.1088/0022-3727/19/1/014
47.
47. T. J. Fabish, H. M. Salzburg and M. L. Hair, J. Appl. Phys. 47, 940 (1976).
http://dx.doi.org/10.1063/1.322684
48.
48. J. Lowell, J. Phys, D: Appl. Phys. 17, 1859 (1984).
http://dx.doi.org/10.1088/0022-3727/17/9/011
49.
49. W. R. Salaneck, A. Paton, D. T. Clark, J. Appl. Phys. 47, Issue 1, 144147 (1976).
http://dx.doi.org/10.1063/1.322306
50.
50. D. R. Wheele, Wear 66, Issue 3, 355365 (1981).
http://dx.doi.org/10.1016/0043-1648(81)90128-9
51.
51. J. Lowell, J. Phys. D: Appl. Phys. 10, L233 (1977).
http://dx.doi.org/10.1088/0022-3727/10/17/001
52.
52. L. B. Schein, SCIENCE 316, 15721573 (2007).
http://dx.doi.org/10.1126/science.1142325
53.
53. J. Luning, J. Stohr, K. Y. Song, C. J. Hawker, P. Iodice, C. V. Nguyen and D. Y. Yoon, Macromolecules 34, 11281130 (2001).
http://dx.doi.org/10.1021/ma0001584
54.
54. H. W. Gibson, J. M. Pochan, F. C. Bailey, Analytical Chemistry 51, No. 4, 483486 (1979).
http://dx.doi.org/10.1021/ac50040a006
56.
56. N. Knorr, AIP Advances 1, Issue 2 (2011).
http://dx.doi.org/10.1063/1.3592522
57.
57. C. Liu and A. J. Bard, J. Am. Chem. Soc. 131 (18), 63976401 (2009).
http://dx.doi.org/10.1021/ja806785x
58.
58. P. K. Watson and Z-Z Yu, J. Electrostat. 40-41, 6772 (1997).
http://dx.doi.org/10.1016/S0304-3886(97)00016-8
59.
59. D. A. Hays, J. Chem. Phys. 61, 1455 (1974).
http://dx.doi.org/10.1063/1.1682072
60.
60. K. P. Homewood, J. Phys. D: Appl. Phys. 17, 1255 (1984).
http://dx.doi.org/10.1088/0022-3727/17/6/022
61.
61. J. C. Vickerman and D. Briggs, Eds., ToF SIMS: Surface Analysis by Mass Spectrometry, Chichester, U. K.: IM Publications (2001).
62.
62. Rabalais, J. Wayne Principles and Applications of Ion Scattering Spectrometry: Surface Chemical and Structural Analysis. John Wiley & Sons, Inc. ISBN 0-471-20277-0 (2003).
63.
63. M. Sow, D. J. Lacks and R. M. Sankaran, Proc. ESA Annual Meeting on Electrostatics, Paper C4 (2010).
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3687233
Loading
/content/aip/journal/adva/2/1/10.1063/1.3687233
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3687233
2012-02-08
2014-09-03

Abstract

Tribolectric charging results from contact between surfaces, but precisely what is meant by each is not defined or understood, as they relate to charging. The recent microscopic evidence that contact charging can result from material transfer provides incentive to examine how contact charging is affected by these two factors. It is suggested that vigorous rubbing or pressing of two polymers results in transfer of deeper layers than would result from light contacts. Different layers can have substantially different compositions because polymers are typically not homogeneous as a function of depth, so contact and surface are related in this way. This could account for charge transfer between identical polymers, especially in asymmetric contacts in which the frictional force on one polymer differs from that on the other, so that material from different depths is transferred. This review outlines the roles of physics, chemistry and surfaceanalysis in sufficient detail to focus on these subjects. It also makes suggestions how these concepts could be applied to some of the current leading edge research in this area.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3687233.html;jsessionid=eejmvb823kx8.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3687233&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Triboelectric charging of insulating polymers–some new perspectives
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3687233
10.1063/1.3687233
SEARCH_EXPAND_ITEM