Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3687237
1.
1. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
http://dx.doi.org/10.1143/JJAP.36.L459
2.
2. E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, S. I. Molina, A. M. Sanchez, F. J. Pacheco, and R. Garcia, J. Cryst. Growth 201–202, 296 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01346-3
3.
3. T. Kouno, K. Kishino, T. Suzuki, and M. Sakai, IEEE Photonics Journals 6, 1027 (2010).
4.
4. H. Sekiguchi, T. Nakazato, A. Kikuchi, and K. Kishino, J. Cryst. Growth 300, 259 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.036
5.
5. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, Nano Lett. 6, 704708 (2006).
http://dx.doi.org/10.1021/nl052456q
6.
6. V. Ramesh, A. Kikuchi, K. Kishino, M. Funato, and Y. Kawakami, J. Appl. Phys. 107, 114303 (2010).
http://dx.doi.org/10.1063/1.3369434
7.
7. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Jpn. J. Appl. Phys. 43, L1524 (2004).
http://dx.doi.org/10.1143/JJAP.43.L1524
8.
8. S. D. Hersee, X. Sun, and X. Wang, Nano Lett. 6, 18081811 (2006).
http://dx.doi.org/10.1021/nl060553t
9.
9. S. Ishizawa, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 015006 (2008).
http://dx.doi.org/10.1143/APEX.1.015006
10.
10. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Express 1, 124002 (2008).
http://dx.doi.org/10.1143/APEX.1.124002
11.
11. K. Kishino, H. Sekiguchi, and A. Kikuchi, J. Cryst. Growth 311, 2063 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.11.056
12.
12. H. Sekiguchi, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 96, 231104 (2010).
http://dx.doi.org/10.1063/1.3443734
13.
13. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, Opt. Express 17, 20440 (2009).
http://dx.doi.org/10.1364/OE.17.020440
14.
14. S. Ishizawa, K. Kishino, R. Araki, A. Kikuchi, and S. Sugimoto, Appl. Phys. Express 4, 055001 (2011).
http://dx.doi.org/10.1143/APEX.4.055001
15.
15. X. J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand, and J. Eymery, Appl. Phys. Lett. 97, 151909 (2010).
http://dx.doi.org/10.1063/1.3497078
16.
16. T. Kouno, K. Kishino, and M. Sakai, IEEE J. Quantum Electron. 47, 1565 (2011).
http://dx.doi.org/10.1109/JQE.2011.2175369
17.
17. T. Nobis and M. Grundmann, Phys. Rev. A 72, 063806 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.063806
18.
18. J. Y. Lao, Y. Huang, D. Z. Wang, and Z. F. Ren, Nano Lett. 3, 235 (2003).
http://dx.doi.org/10.1021/nl025884u
19.
19. D. Wang, H. W. Seo, C.-C. Tin, M. J. Bozak, J. R. Williams, M. Park, and Y. Tzeng, J. Appl. Phys. 99, 093112 (2006).
http://dx.doi.org/10.1063/1.2196148
20.
20. J. S. Brown, G. Koblmüller, F. Wu, R. Averbeck, H. Riechert and J. S. Speck, J. Appl. Phys. 99, 074902 (2006).
http://dx.doi.org/10.1063/1.2181415
21.
21. J. B. Schlager, K. A. Bertness, P. T. Blanchard, L. H. Robins, A. Roshko, and N. A. Sanford, J. Appl. Phys. 103, 124309 (2008).
http://dx.doi.org/10.1063/1.2940732
22.
22. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).
http://dx.doi.org/10.1143/JJAP.38.3976
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3687237
Loading
/content/aip/journal/adva/2/1/10.1063/1.3687237
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3687237
2012-02-09
2016-09-26

Abstract

Periodically arranged novel InGaN hexagonal nanoplates were fabricated at the tops of square-lattice N-polarity GaN nanocolumn arrays. The key finding in this work is that the growth of InGaN on N-polarity GaN nanocolumns led to a peculiar nanoplate structure. The InGaN nanoplates with thicknesses of 50-100 nm extended outward from the narrow nanocolumns with diameters of 100-150 nm, to form larger hexagonal nanoplates with a typical side length of 250 nm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3687237.html;jsessionid=3EGZo04hF7CevQudUmfbssVL.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3687237&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3687237&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3687237'
Right1,Right2,Right3,