Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Iacona, G. Franzo, M. Miritello, R. L. Savio, E. F. Pecora, A. Irrera, and F. Priolo, Optical Materials 31, 1269 (2009).
2. M. Miritello, R. Lo. Savio, A. M. Piro, G. Franzo, F. Priolo, F. Iacona, and C. Bongiorno, J. Appl. Phys. 100, 013502 (2006).
3. R. Lo. Savio, M. Miritello, P. Cardile, and F. Priolo, Appl. Phys. 106, 043512 (2009).
4. K. Suh, J. H. Shin, S.-J Seo, and B.-S Bae, Appl. Phys. Lett. 89, 223102 (2006).
5. R. L. Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, Appl. Phys. Lett. 93, 021919 (2008).
6. X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, Appl. Phys. Lett. 95, 041906 (2009).
7. M. Miritello, R. L. Savio, F. Iacona, G. Franzo, C. Bongiorno, A. Irrera, and F. Priolo, J. Luminscence 121, 233 (2006).
8. C. P. Michael, H. B. Yuen, V. A. Sabnis, T. J. Johnson, R. Sewell, R. Smith, A. Jamora, A. Clark, S. Semans, P. B. Atanackovic, and O. Painter, Optics Express 16, 19649 (2008).
9. H. Omi, T. Kawamura, Y. Kobayashi, S. Fujikawa, Y. Tsusaka, Y. Kagoshima, and J. Matsui, App. Phys. Exp. 2, 126503 (2009).
10. H. Isshiki, A. Polman, and T. Kimura, J. Luminescence 102-103, 819 (2003).
11. A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).
12. T. Tawara, H. Kamada, T. Tanabe, T. Sogawa, H. Okamoto, P. Yao, P. K. Pathak, and S. Hughes, Optics Express 18, 2719 (2010).
13. H. Omi and T. Tawara, Jpn. J. Appl. Phys. (in press).
14. J. B. Gruber, G. W. Burdick, S. Chandra, and D. K. Sardar, J. Appl. Phys. 108, 023109 (2010).
15. L. S. Menezes, G. S. Maciel, and C. B. De Araujo, and Y. Messaddeq, J. Appl. Phys. 90, 4498 (2001).
16. A. Kasuya and M. Suezawa, Appl. Phys. Lett. 71, 2728 (1997).
17. J. B. Gruber, R. D. Chirico, and E. F. Westrum Jr., J. Chem. Phys. 76, 1982 (1982).
18. F. Letz, A. Hryciw, R. DeCorby, and A. Meldrum, Appl. Phys. Lett. 95, 091909 (2009).

Data & Media loading...


Article metrics loading...



The erbium silicate formation processes during annealing in Ar gas were monitored by synchrotron radiation grazing incidence X-ray diffraction(GIXD) in real time and the optical properties of the silicates were investigated by photoluminescence measurements in spectral and time-resolved domains. The GIXD measurements show that erbium silicates and erbium oxide are formed by interface reactions between silicon oxide and erbium oxides deposited on silicon oxide by reactive sputtering in Ar gas and O2/Ar mixture gas ambiences. The erbium silicates are formed above 1060 °C in Ar gas ambience and above 1010 °C in O2/Ar gas ambience, and erbium silicides are dominantly formed above 1250 °C. The I 15/2-I 13/2 Er3+photoluminescence from the erbium oxide and erbium silicate exhibits abnormal temperature dependence, which can be explained by the phonon-assisted resonant absorption of the 532-nm excitation photons into the 2 H 11/2 levels of Er3+ ions of the erbium compounds.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd