Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Herdt, S. Dutz, R. Müller, and M. Zeisberger, J. Phys.: Condens. Matter 18, S2919 (2006).
2. R. Herdt and S. Dutz, J. Magn. Magn. Mater. 311, 187 (2007).
3. R. Herdt, S. Dutz, and M. Röder, J. Phys.: Condens. Matter 20, 385214 (2008).
4. Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009).
5. J. Carrey, B. Mehdaoui, and M. Respaud, J. Appl. Phys. 109, 083921 (2011).
6. R. Herdt, R. Hiergeist, M. Zeisberger, D. Schüller, U. Heyen, I. Hilger, and W. A. Kaiser, J. Magn. Magn. Mater. 293, 80 (2005).
7. M. Zeisberger, S. Dutz, R. Müller, R. Herdt, N. Matoussevitch, and H. Bönnemann, J. Magn. Magn. Mater. 311, 224 (2007).
8. B. Mehdaoui, A. Meffre, L.-M. Lacroix, J. Carrey, S. Lachaize, M. Gougeon, M. Respaud, and B. Chaudret, J. Magn. Magn. Mater. 322, L49 (2010).
9. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002).
10. N. A. Usov, J. Appl. Phys. 107, 123909 (2010).
11. S. Dutz, J. H. Clement, D. Eberbeck, T. Gelbrich, R. Hergt, R. Muller, J. Wotschadlo, and M. Zeisberger, J. Magn. Magn. Mater. 321 (2009) 1501.
12. S. Huang, A. Gupta, and D.-A. Borca-Tasciuc, ASME Conf. Proc. 2010, 731 (2010).
13. J. P. Fortin, F. Gazeau, and C. Wilhelm, Eur. Biophys. J. 37, 223 (2008).
14. M. Suto, Y. Hirota, H. Mamiya, A. Fujita, R. Kasuya, K. Tohji, and B. Jeyadevan, J. Magn. Magn. Mater. 321, 1493 (2009).
15. F. Fiorillo, Metrologia 47, S114 (2010).
16. H. Kobayashi, A. Hirukawa, A. Tomitaka, T. Yamada, M. Jeun, S. Bae, and Y. Takemura, J. Appl. Phys. 107 (2010) 09B322.
17. L.-M. Lacroix, J. Carrey, and M. Respaud, Rev. Sci. Instrum. 79, 093909 (2008).
18. S. A. Gudoshnikov, Yu. B. Grebenshchikov, B. Ya. Liubimov, and N. A. Usov, Book of abstracts of Moscow International Symposium on Magnetism, 21 - 25 August 2011, Moscow, Russia, p. 280281.

Data & Media loading...


Article metrics loading...



The hysteresis losses of a dense assembly of magnetite nanoparticles with an average diameter D = 25 nm are measured in the frequency range f = 10 – 200 kHz for magnetic field amplitudes up to H 0 = 400 Oe. The low frequency hysteresis loops of the assembly are obtained by means of integration of the electro-motive force signal arising in a small pick-up coil wrapped around a sample which contains 1 – 5 mg of a magnetite powder. It is proved experimentally that the specific absorption rate diminishes approximately 4.5 times when the sample aspect ratio decreases from 11.4 to 1. Theoretical estimate shows that experimentally measuredhysteresis loops can be approximately described only by taking into account appreciable contributions of magnetic nanoparticles of both very small, D < 10 – 12 nm, and rather large, D > 30 nm, diameters. Thus the wide particle size distribution has to be assumed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd