1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Recovery response of optical stopping effect on P2As20S78 and Sn1As20S79 film waveguide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3688768
1.
1. A. C. Van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, J. N. McMullin, D. Tonchev, and S. O. Kasap, Opt. Express 10, 639 (2002).
2.
2. M. Asobe, K. Suzuki, T. Kanamori, and K. Kubodera, Appl. Phys. Lett. 60, 1153 (1992).
http://dx.doi.org/10.1063/1.107388
3.
3. J. M. Laniel, N. , R. Vallée and A. Villeneuve, J. Opt. Soc. Am. B 22, 437 (2005).
http://dx.doi.org/10.1364/JOSAB.22.000437
4.
4. M. Frumar, J. Jedelský, B. Frumarová, T. Wágner, and M. Hrdlicka, J. Non-Cryst. Solids 326–327, 399 (2003).
http://dx.doi.org/10.1016/S0022-3093(03)00446-0
5.
5. A. V. Stronski, M. Vlcek, A. Sklenar, P. E. Shepeljavi, S. A. Kostyukevich, and T. Wagner, J. Non-Cryst. Solids 266–269, 973 (2000).
http://dx.doi.org/10.1016/S0022-3093(00)00032-6
6.
6. S. Ramachandran, and S. G. Bishop, Appl. Phys. Lett. 74, 13 (1999).
http://dx.doi.org/10.1063/1.123118
7.
7. L. E. Zou, B. X. Chen, H. S. Lin, H. Hamanaka, and M. Iso, Appl. Opt. 48, 6442 (2009).
http://dx.doi.org/10.1364/AO.48.006442
8.
8. Ravi Pant, Trung D. Vo, Chunle Xiong, Mark D. Pelusi, Steve J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton, Opt. Lett. 36, 298 (2011).
http://dx.doi.org/10.1364/OL.36.000298
9.
9. E. Lepine, Z. Yang, Y. Gueguen, J. Troles, X. Zhang, B. Bureau, C. Boussard-Pledel, J. Sangleboeuf, and P. Lucas, J. Opt. Soc. Am. B 27, 966 (2010).
http://dx.doi.org/10.1364/JOSAB.27.000966
10.
10. A. Zakery, and S. R. Elliott, J. Non-Cryst. Solids 330, 1 (2003).
http://dx.doi.org/10.1016/j.jnoncrysol.2003.08.064
11.
11. M. Asobe, T. Ohara, I. Yokohama and T. Kaino, Electron. Lett. 32, 1396 (1996).
http://dx.doi.org/10.1049/el:19960910
12.
12. P. K. Gupta, J. Non-Cryst. Solids 195, 158 (1996).
http://dx.doi.org/10.1016/0022-3093(95)00502-1
13.
13. V. M. Lyubin, and V. K. Tikhomirov, J. Non-Cryst. Solids 135, 37 (1991).
http://dx.doi.org/10.1016/0022-3093(91)90440-H
14.
14. J. M. Saiter, K. Chebli, and A. Hamou, Physica B: Physics of Condensed Matter 293, 98 (2000).
http://dx.doi.org/10.1016/S0921-4526(00)00540-8
15.
15. L. E. Zou, B. X. Chen, L. Chen, Y. F. Yuan, M. Hamanaka, and M. Iso, Appl. Phy. Lett. 88, 153510 (2006).
http://dx.doi.org/10.1063/1.2195782
16.
16. K. S. Andrikopoulos, A. G. Kalampounias, and S. N. Yannopoulos, Phys. Rev. B 72, 014203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014203
17.
17. F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, M. Frumar, T. Wagner, and S. N. Yannopoulos, J. Non-Cryst. Solids 355, 2010 (2009).
http://dx.doi.org/10.1016/j.jnoncrysol.2009.04.070
18.
18. F. Kyriazis, and S. N. Yannopoulos, Appl. Phys. Lett. 94, 101901 (2009).
http://dx.doi.org/10.1063/1.3095849
19.
19. M. Kastner, Phys. Rev. Lett. 28, 355 (1972).
http://dx.doi.org/10.1103/PhysRevLett.28.355
20.
20. D. Adler, J. Non-Cryst. Solids 35–36, 819 (1980).
http://dx.doi.org/10.1016/0022-3093(80)90301-4
21.
21. E. A. Davis, In: M. H. Brodsky, Editor, Topics in Applied Physics: Physics of Amorphous Semiconductors, Springer, Berlin (1979), p. 41.
22.
22. N. Asha Bhat, K. S. Sangunni, and K. S. R. K. Rao, J. Non-Cryst. Solids 319, 192 (2003).
http://dx.doi.org/10.1016/S0022-3093(02)01918-X
23.
23. M. Kastner, D. Adler, and H. Fritzche, Phys. Rev. Lett. 37, 1504 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.1504
24.
24. L. E. Zou, B. X. Chen, H. Hamanaka, and M. Iso, J. Phys. D: Appl. Phys. 41, 095108 (2008).
http://dx.doi.org/10.1088/0022-3727/41/9/095108
25.
25. S. R. Ovshinsky, and D. Adler, Contemp. Phys. 19, 109 (1978).
http://dx.doi.org/10.1080/00107517808210876
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3688768
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Raman spectra of the bulk glass, as-evaporated film, and annealed film of As20S80.

Image of FIG. 2.

Click to view

FIG. 2.

Experimental system for optical stopping effect.

Image of FIG. 3.

Click to view

FIG. 3.

Propagation light of 632.8 nm He-Ne laser on Sn1As20S79 for optical stopping effect. (a) He-Cd laser is On; (b) He-Cd laser is Off.

Image of FIG. 4.

Click to view

FIG. 4.

Response time of Optical stopping effects on As20S80 system film waveguide (P2As20S78, As20S80, and Sn1As20S79).

Image of FIG. 5.

Click to view

FIG. 5.

(a) Optical stopping effect of Sn1As20S79 under sufficient illumination by He-Cd laser for 800 ms and 2.4 s, respectively; (b) Optical stopping effect of Sn1As20S79 under the consecutive insufficient illumination of He-Cd laser for three times.

Image of FIG. 6.

Click to view

FIG. 6.

Optical stopping effect on Sn1As20S79 with (On) and without (Off) the illumination of an assistant He-Ne laser. An inset figure for enlargement of recovery response.

Image of FIG. 7.

Click to view

FIG. 7.

Distribution of the trapped states for As20S80 system. Ec, Ev, and Ef are the mobility edge of the conduction band, the mobility edge of the valence band, and the Fermi level.

Image of FIG. 8.

Click to view

FIG. 8.

Visible light spectrum of As20S80, P2As20S78 and Sn1As20S79.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3688768
2012-02-14
2014-04-17

Abstract

The recovery response characteristics of optical stopping effect on the low-impurity As20S80 system (P2As20S78 and Sn1As20S79) film waveguides are investigated in detail. Compared with As20S80, P2As20S78 film waveguide deteriorates the response behavior of recovery propagation and is mainly characterized by the slow recovery propagation process with the disappearance of the fast rising edge. On the contrary, Sn1As20S79 can improve evidently the earlier recovery stage by shortening response time of the rising edge to the milliseconds level, and also reduce the optical propagation loss. Experiments also show that the optical stopping effect can reach a saturated degree under He-Cd laser illumination for no less than 800 ms, and the addition of an assistant He-Ne laser may improve the recovery response slightly but not significantly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3688768.html;jsessionid=fkb83c2thyja.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3688768&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Recovery response of optical stopping effect on P2As20S78 and Sn1As20S79 film waveguide
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3688768
10.1063/1.3688768
SEARCH_EXPAND_ITEM