Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3690113
1.
1. K. Ando, Science 312, 1883 (2006).
http://dx.doi.org/10.1126/science.1125461
2.
2. H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
3.
3. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature 402, 790 (1999).
http://dx.doi.org/10.1038/45509
4.
4. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
5.
5. I. Zutic, J. Fabian and S. Das Sarma, Reviews of Modern Physics 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
6.
6. J. K. Furdyna, Journal of Applied Physics 64, R29 (1988).
http://dx.doi.org/10.1063/1.341700
7.
7. T. Fukumura, Z. W. Jin, A. Ohtomo, H. Koinuma and M. Kawasaki, Applied Physics Letters 75, 3366 (1999).
http://dx.doi.org/10.1063/1.125353
8.
8. S. B. Ogale, Advanced Materials 22, 3125 (2010).
http://dx.doi.org/10.1002/adma.200903891
9.
9. A. Korbecka and J. A. Majewski, Low Temperature Physics 35(1), 53 (2009).
http://dx.doi.org/10.1063/1.3064909
10.
10. A. Oiwa, Y. Mitsumori, R. Moriya, T. Słupinski and H. Munekata, Physical Review Letters 88, 137202 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.137202
11.
11. F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Physical Review B 57, R2037 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.R2037
12.
12. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science 291, 854 (2001).
http://dx.doi.org/10.1126/science.1056186
13.
13. D. W. Abraham, M. M. Frank and S. Guha, Applied Physics Letters 87, 252502 (2005).
http://dx.doi.org/10.1063/1.2146057
14.
14. I. S. Elfimov, S. Yunoki and G. A. Sawatzky, Physical Review Letters 89, 216403 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.216403
15.
15. J. Osorio-Guillén, S. Lany and A. Zunger, Physical Review Letters 100, 036601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.036601
16.
16. A. R. Barman, M. Motapothula, A. Annadi, K. Gopinadhan, Y. L. Zhao, Z. Yong, I. Santoso, Ariando, M. Breese, A. Rusydi, S. Dhar and T. Venkatesan, Applied Physics Letters 98, 072111 (2011).
http://dx.doi.org/10.1063/1.3553773
17.
17. S. D. A. Rusydi, A. Roy Barman, Ariando, D. C. Qi, M. Motapothula, J. B. Yi, I. Santoso, Y. P. Feng, K. Yang, Y. Dai, N. L. Yakovlev, J. Ding, A. T. S. Wee, G. Neuber, M. B. H. Breese, M. Reubhausen, H. Hilgenkamp, T. Venktesan, Philosopical Transaction of The Royal Soceity A (2011) (unpublished).
18.
18. S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute and T. Venkatesan, Journal of Applied Physics 102, 013701 (2007).
http://dx.doi.org/10.1063/1.2750407
19.
19. A. Zunger, Applied Physics Letters 83, 57 (2003).
http://dx.doi.org/10.1063/1.1584074
20.
20. S. B. Zhang, S. H. Wei and A. Zunger, Journal of Applied Physics 83, 3192 (1998).
http://dx.doi.org/10.1063/1.367120
21.
21. S. X. Zhang, S. B. Ogale, W. Q. Yu, X. Y. Gao, T. Liu, S. Ghosh, G. P. Das, A. T. S. Wee, R. L. Greene and T. Venkatesan, Advanced Materials 21, 2282 (2009).
http://dx.doi.org/10.1002/adma.200803019
22.
22. A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X. H. Xu, J. R. Neal, A. M. Fox and G. A. Gehring, Physical Review Letters 100, 047206 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.047206
23.
23. B. W. Wessels, New Journal of Physics 10, 055008 (2008).
http://dx.doi.org/10.1088/1367-2630/10/5/055008
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3690113
Loading
/content/aip/journal/adva/2/1/10.1063/1.3690113
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3690113
2012-02-16
2016-09-26

Abstract

Thin films of Ta incorporated TiO2grown by pulsed laser deposition under specific growth conditions show room temperature ferromagnetism.Ta introduces carriers and concomitantly cationic defects, the combination of which leads to ferromagnetism. In this paper, we report on the dependence of the carrier and cationic defect density (compensation) on various parameters such as oxygen growth pressure, temperature and Ta concentration. Most likely, the Ti vacancies act as magnetic centers and the free electrons help with the exchange leading to ferromagnetism via Ruderman-Kittel-Kasuya-Yosida mechanism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3690113.html;jsessionid=dfnC_A1ee48AEW6akjsattDX.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3690113&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3690113&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3690113'
Right1,Right2,Right3,