Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. MNT Gas Sensor Roadmap, MNT Gas Sensor Forum, 2006 available at,0,w.
2. I. K. Sou, M. C. W. Wu, T. Sun, K. S. Wong and G. K. L. Wong, Appl. Phys. Lett. 78, 1811 (2001).
3. E. Ozbay, T. Tut and N. Biyikli, in Quantum Sensing and Nanophotonic Devices II, Proceedings of SPIE 5732, Bellingham, WA, 2005, edited by M. Razeghi, G. J. Brown (SPIE, 2005), pp. 375388.
4. E. V. Gorokhov, A. N. Magunov, V. S. Feshchenko and A. A. Altukhov, Exp. Tech. 51, 131 (2008).
5. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai and S. Ohira, Appl. Phys. Lett. 94, 222102 (2009).
6. J. Xing, E. Guo, K. J. Jin, H. B. Lu, J. Wen, and G. Z. Yang, Opt. Lett. 34, 1675 (2009).
7. X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue and A. Y. Kuznetsov, Adv. Mater. 21, 4625 (2009).
8. Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen and X. W. Fan, Appl. Phys. Lett. 93, 173505 (2008).
9. L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li and J. Y. Zhang, Solid State Commun. 49, 2021 (2009).
10. L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li and C. X. S. Shan, Appl. Phys. Lett. 95, 131113 (2009).
11. T. Takagi, H. Tanaka and S. Fujita and S. Fujita, JPN. J. Appl. Phys. 42, L401 (2003).
12. H. Okuyama, Y. Kishita, and A. Ishibashi, Phys. Rev. B 57, 2257 (1998).
13. D. Rached, N. Benkhettou, B. Soudini, B. Abbar, N. Sekkai and M. Driz, Phys. Stat. Sol. (b) 240, No. 3, 565 (2003).
14. F. El. Haj Hassan, A. Bleybel, A. Hijazi, A. Alaeddine, B. Beydoun, and M. Zoaeter, Mater. Lett. 61, 1178 (2007).
15. R. Pandey, J. E. Jaffe, and A. B. Kunz, Phys. Rev. B 43, 9228 (1991).
16. C. Bradford, C. B. O’Donnell, B. Urbaszek, C. Morhain, A. Balocchi, K. A. Prior, and B. C. Cavenett, Phys. Rev. B 64, 195309 (2001).
17. I. A. Davidson, R. T. Moug, F. Izdebski, C. Bradford and K. A. Prior, Phys. Stat. Sol. B 247, 1396 (2010).
18. See supplementary material at for Auger Scan of the MgS thin films and in-situ RHEED patterns during the growth. [Supplementary Material]
19. D. R. Lide, Handbook of Chemistry and Physics, ed. 76 (CRC Press, Boca Raton, 1995).
20. S. M. Peiris, A. J. Campbell and D. L. Heinz, J. PhysChem Solids 55, 413 (1994).
21. A. W. Stevenson, Acta Crystal A50, 621 (1994).
22. JCPDS—ICDD, Powder Diffraction Files, Swarthmore, PA, Card No. 35-0730, PDF-2 database (2000).
23. JCPDS—ICDD, Powder Diffraction Files, Swarthmore, PA, Card No. 32-0389, PDF-2 database (2000).
24. C. Bocchi, A. Catellani, F. Germini, L. Nasi, J. K. Morrod, K. A. Prior and G. Calestani, Phys. Rev. B 79, 235310 (2009).
25. A. I. Fernández, J. M. Chimenos, M. Segarra, M. A. Fernández and F. Espiell, Hydrometallurgy 53, 155 (1999).
26. P. Korecki, P. Piątkowski and M. Szymoński, Surf. Sci. 45, 22 (1999).
27. M. Szymonski, P. Korecki, J. Kolodziej, P. Czuba, P. Piatkowski, Solid Films 367, 134 (2000).
28. R. Klause, M. Kunbota, Y. Murata, M. Oshima, Y. Y. Marup, T. Kawamura and T. Miyahara, Phys. Rev. B 40, 3301 (1989).
29. K. Nashimoto, D. K. Fok and T. H. Geballe, Appl. Phys. Lett. 60, 1199 (1992).
30. A. Kuhn, A. Chevy and R. Chevalier, Acta Crystallogr. B32, 983 (1976).

Data & Media loading...


Article metrics loading...



Studies using in-situ Auger electron spectroscopy and reflection high energy electron diffraction, and ex-situ high resolution X-ray diffraction and electron backscatter diffraction reveal that a MgS thin filmgrown directly on a GaAs (100) substrate by molecular beam epitaxy adopts its most stable phase, the rocksalt structure, with a lattice constant of 5.20 Å. A Au/MgS/n+-GaAs (100) Schottky-barrier photodiode was fabricated and its room temperature photoresponse was measured to have a sharp fall-off edge at 235 nm with rejection of more than three orders at 400 nm and higher than five orders at 500 nm, promising for various solar-blind UV detection applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd