Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3690139
1.
1. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B. 63, 054416 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.054416
2.
2. J. Mathon and A. Umerski, Phys. Rev. B. 63, 220403 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.220403
3.
3. M. Bowen, V. Cros, F. Petroff, A. Fert, C. M. Boubeta, J. L. Costa-Krämer, J. V. Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellon, M. R. Ibarra, F. Güell, F. Peiro, and A. Cornet, Appl. Phys. Lett. 79, 1655 (2001).
http://dx.doi.org/10.1063/1.1404125
4.
4. J. Faure-Vincent, C. Tiusan, E. Jouguelet, F. Canet, M. Sajieddine, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, and A. Schuhl, Appl. Phys. Lett. 82, 4507 (2003).
http://dx.doi.org/10.1063/1.1586785
5.
5. S. S. P. Parkin, C. Kaiser, A. Panchula, P. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nat. Mater. 3, 862 (2004).
http://dx.doi.org/10.1038/nmat1256
6.
6. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
http://dx.doi.org/10.1038/nmat1257
7.
7. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).
http://dx.doi.org/10.1063/1.2976435
8.
8. H. Yang, S.-H. Yang, S. S. P. Parkin, T. Leo, and D. J. Smith, Appl. Phys. Lett. 90, 202502 (2007).
http://dx.doi.org/10.1063/1.2739333
9.
9. J. A. X. Alexander, T. P. Orlando, D. Rainer, and P. M. Tedrow, Phys. Rev. B. 31, 5811 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5811
10.
10. J. S. Parker, S. M. Watts, P. G. Ivanov, and P. Xiong, Phys. Rev. Lett. 88, 196601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.196601
11.
11. X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P. Parkin, Phys. Rev. Lett. 94, 056601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.056601
12.
12. C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutic, Appl. Phys. Lett. 93, 042513 (2008).
http://dx.doi.org/10.1063/1.2967739
13.
13. J. Lee, W. Falls, R. Oszwaldowski, and I. Zutic, Appl. Phys. Lett. 97, 041116 (2010).
http://dx.doi.org/10.1063/1.3473759
14.
14. H. Dery, W. Hui, B. Ciftcioglu, M. Huang, S. Yang, R. Kawakami, S. Jing, I. Krivorotov, I. Zutic, and L. J. Sham, IEEE Trans. Electron Devices 59, 259 (2012).
http://dx.doi.org/10.1109/TED.2011.2173498
15.
15. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963).
http://dx.doi.org/10.1063/1.1702682
16.
16. J. Y. Bae, W. C. Lim, H. J. Kim, T. D. Lee, K. W. Kim, and T. W. Kim, J. Appl. Phys. 99, 08T316 (2006).
http://dx.doi.org/10.1063/1.2170591
17.
17. J. Schmalhorst, A. Thomas, G. Reiss, X. Kou, and E. Arenholz, J. Appl. Phys. 102, 053907 (2007).
http://dx.doi.org/10.1063/1.2776001
18.
18. J. Read, P. Mather, and R. Buhrman, Appl. Phys. Lett. 90, 132503 (2007).
http://dx.doi.org/10.1063/1.2717091
19.
19. H. L. Meyerheim, R. Popescu, N. Jedrecy, M. Vedpathak, M. Sauvage-Simkin, R. Pinchaux, B. Heinrich, and J. Kirschner, Phys. Rev. B. 65, 144433 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144433
20.
20. X.-G. Zhang, W. H. Butler, and A. Bandyopadhyay, Phys. Rev. B. 68, 092402 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.092402
21.
21. H. L. Meyerheim, R. Popescu, J. Kirschner, N. Jedrecy, M. Sauvage-Simkin, B. Heinrich, and R. Pinchaux., Phys. Rev. Lett. 87, 076102 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.076102
22.
22. T. Lin and D. Mauri, U.S. Patent 6841395 B2 (2005).
23.
23. S. Parkin, MRS Bulletin 31, 389 (2006).
http://dx.doi.org/10.1557/mrs2006.99
24.
24. T. Moriyama, C. Ni, W. G. Wang, X. Zhang, and J. Q. Xiao, Appl. Phys. Lett. 88, 222503 (2006).
http://dx.doi.org/10.1063/1.2207835
25.
25. A. T. Hindmarch, V. Harnchana, D. Ciudad, E. Negusse, D. A. Arena, A. P. Brown, R. M. D. Brydson, and C. H. Marrows, Appl. Phys. Lett. 97, 252502 (2010).
http://dx.doi.org/10.1063/1.3527939
26.
26. K. Tsunekawa, D. D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 072503 (2005).
http://dx.doi.org/10.1063/1.2012525
27.
27. P. G. Mather, J. C. Read, and R. A. Buhrman, Phys. Rev. B. 73, 205412 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205412
28.
28. E. Tan, P. G. Mather, A. C. Perrella, J. C. Read, and R. A. Buhrman, Phys. Rev. B. 71, 161401 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.161401
29.
29. A. T. Hindmarch, K. J. Dempsey, D. Ciudad, E. Negusse, D. A. Arena, and C. H. Marrows, Appl. Phys. Lett. 96, 092501 (2010).
http://dx.doi.org/10.1063/1.3332576
30.
30. Y. Liu, A. N. Chiaramonti, D. K. Schreiber, H. Yang, S. S. P. Parkin, O. G. Heinonen, and A. K. Petford-Long, Phys. Rev. B. 83, 165413 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165413
31.
31. H. Yang, S.-H. Yang, D.-C. Qi, A. Rusydi, H. Kawai, M. Saeys, T. Leo, D. J. Smith, and S. S. P. Parkin, Phys. Rev. Lett. 106, 167201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.167201
32.
32. S. Zhang, P. M. Levy, A. C. Marley, and S. S. P. Parkin, Phys. Rev. Lett. 79, 3744 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3744
33.
33. Y. Ando, T. Miyakoshi, M. Oogane, T. Miyazaki, H. Kubota, K. Ando, and S. Yuasa, Appl. Phys. Lett. 87, 142502 (2005).
http://dx.doi.org/10.1063/1.2077861
34.
34. F. Greullet, C. Tiusan, F. Montaigne, M. Hehn, D. Halley, O. Bengone, M. Bowen, and W. Weber, Phys. Rev. Lett. 99, 187202 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.187202
35.
35. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
http://dx.doi.org/10.1063/1.1871344
36.
36. D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269 (2004).
http://dx.doi.org/10.1109/TMAG.2004.830219
37.
37. Y. Lu, C. Deranlot, A. Vaurès, F. Petroff, J.-M. George, Y. Zheng, and D. Demailles, Appl. Phys. Lett. 91, 222504 (2007).
http://dx.doi.org/10.1063/1.2819530
38.
38. J. J. Cha, J. C. Read, R. A. Buhrman, and D. A. Muller, Appl. Phys. Lett. 91, 062516 (2007).
http://dx.doi.org/10.1063/1.2769753
39.
39. H. Kurt, K. Rode, K. Oguz, M. Boese, C. C. Faulkner, and J. M. D. Coey, Appl. Phys. Lett. 96, 262501 (2010).
http://dx.doi.org/10.1063/1.3457475
40.
40. S. Pinitsoontorn, A. Cerezo, A. K. Petford-Long, D. Mauri, L. Folks, and M. J. Carey, Appl. Phys. Lett. 93, 071901 (2008).
http://dx.doi.org/10.1063/1.2973045
41.
41. J. J. Cha, J. C. Read, J. W. F. Egelhoff, P. Y. Huang, H. W. Tseng, Y. Li, R. A. Buhrman, and D. A. Muller, Appl. Phys. Lett. 95, 032506 (2009).
http://dx.doi.org/10.1063/1.3184766
42.
42. J. Schmalhorst, A. Thomas, G. Reiss, X. Kou, and E. Arenholz, J. Appl. Phys. 102, 053907 (2007).
http://dx.doi.org/10.1063/1.2776001
43.
43. S. S. Mukherjee, D. MacMahon, F. Bai, C.-L. Lee, and S. K. Kurinec, Appl. Phys. Lett. 94, 082110 (2009).
http://dx.doi.org/10.1063/1.3090035
44.
44. Y. Lu, B. Lépine, G. Jézéquel, S. Ababou, M. Alnot, J. Lambert, A. Renard, M. Mullet, C. Deranlot, H. Jaffrès, F. Petroff, and J.-M. George, J. Appl. Phys. 108, 043703 (2010).
http://dx.doi.org/10.1063/1.3465308
45.
45. S. V. Karthik, Y. K. Takahashi, T. Ohkubo, K. Hono, S. Ikeda, and H. Ohno, J. Appl. Phys. 106, 023920 (2009).
http://dx.doi.org/10.1063/1.3182817
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3690139
Loading
/content/aip/journal/adva/2/1/10.1063/1.3690139
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3690139
2012-02-16
2016-12-04

Abstract

The tunneling spin polarization (TSP) is directly measured from reactively sputter deposited crystalline MgO tunnel barriers with various CoFe(B) compositions using superconducting tunneling spectroscopy. We find that the Mg interface layer thickness dependence of TSP values for CoFeB/Mg/MgO junctions is substantially different from those for CoFe/Mg/MgO especially in the pre-annealed samples due to the formation of boron oxide at the CoFeB/MgO interface. Annealing depletes boron at the interface thus requiring a finite Mg interface layer to prevent CoFeOx formation at the CoFeB/MgO interface so that the TSP values can be optimized by controlling Mg thickness.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3690139.html;jsessionid=5LyThpln6gwzrqHrwpy8cjrV.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3690139&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3690139&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3690139'
Right1,Right2,Right3,