Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3690964
1.
1. A. Fetter and J. Walecka, Quantum theory of many-particle systems, Dover Books on Physics (Dover Publications, 2003).
2.
2. G. Mahan, Many-particle physics, Physics of solids and liquids (Kluwer Academic/Plenum Publishers, 2000).
3.
3. V. V. Cheianov, Eur. Phys. J. Special Topics 148, 55 (2007).
http://dx.doi.org/10.1140/epjst/e2007-00225-5
4.
4. J. Friedel, Philosophical Magazine Series 7 43, 153 (1952).
5.
5. V. V. Cheianov and V. I. Fal'ko, Phys. Rev. Lett. 97, 226801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.226801
6.
6. E. H. Hwang and S. Das Sarma, Phys. Rev. Lett. 101, 156802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.156802
7.
7. R. F. Zhang, A. S. Argon, and S. Veprek, Phys. Rev. Lett. 102, 015503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.015503
8.
8. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature 363, 524 (1993).
http://dx.doi.org/10.1038/363524a0
9.
9. Y. Hasegawa and P. Avouris, Phys. Rev. Lett. 71, 1071 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.1071
10.
10. P. T. Sprunger, L. Petersen, E. W. Plummer, E. Laegsgaard, and F. Besenbacher, Science 275, 1764 (1997).
http://dx.doi.org/10.1126/science.275.5307.1764
11.
11. B. Dóra, Europhys. Lett. 70, 362 (2005).
http://dx.doi.org/10.1209/epl/i2005-10008-4
12.
12. C. Wursch, C. Stamm, S. Egger, D. Pescia, W. Baltensperger, and J. S. Helman, Nature 389, 937 (1997).
http://dx.doi.org/10.1038/40081
13.
13. W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
http://dx.doi.org/10.1103/PhysRevLett.2.393
14.
14. M. Lighthill, Introduction to Fourier analysis and generalized functions (Cambridge University Press, 1980).
15.
15. J. Kapusta and T. Toimela, Phys. Rev. D 37, 3731 (1988).
http://dx.doi.org/10.1103/PhysRevD.37.3731
16.
16. H. D. Sivak, J. Diaz-Alonso, and A. Perez, Prog. Theor. Phys. 105, 961 (2001).
http://dx.doi.org/10.1143/PTP.105.961
17.
17. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.1017
18.
18. Hirofumi and Yamada, Physics Letters B 223, 229 (1989).
http://dx.doi.org/10.1016/0370-2693(89)90244-X
19.
19. R. A. Schneider, Phys. Rev. D 66, 036003 (2002).
http://dx.doi.org/10.1103/PhysRevD.66.036003
20.
20. J. Diaz Alonso, A. Perez Canyellas, and H. Sivak, Nucl. Phys. A 505, 695 (1989).
http://dx.doi.org/10.1016/0375-9474(89)90038-9
21.
21. J. Diaz Alonso, E. Gallego, and A. Perez, Phys. Rev. Lett. 73, 2536 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2536
22.
22. O. Jeandupeux, L. Bürgi, A. Hirstein, H. Brune, and K. Kern, Phys. Rev. B 59, 15926 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.15926
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3690964
Loading
/content/aip/journal/adva/2/1/10.1063/1.3690964
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3690964
2012-02-17
2016-12-07

Abstract

We revisit the analytical properties of the static quasi-photon polarizabilityfunction for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3690964.html;jsessionid=fhTJVWZqZ0phSwGUJWoMgfhD.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3690964&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3690964&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3690964'
Right1,Right2,Right3,