Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3691830
1.
1. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
http://dx.doi.org/10.1063/1.1482786
2.
2. Q. X. Guo, M. Nishio, H. Ogawa, A. Wakahara and A. Yoshida, Phys. Rev. B 58, 15304 (1998);
http://dx.doi.org/10.1103/PhysRevB.58.15304
2.T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
http://dx.doi.org/10.1063/1.336906
3.
3. I. Mahboob, T. D. Veal, C. F. McConville, H. Lu and W. J. Schaff, Physical Review Letters 92, 036804 (2004);
http://dx.doi.org/10.1103/PhysRevLett.92.036804
3.I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, Hai Lu, W. J. Schaff, J. Furthmüller and F. Bechstedt, Phys. Rev. B 69, 201307 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.201307
4.
4. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, S. Motokawa, and S. Ohoya, J. Cryst. Growth 227, 481 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)00747-3
5.
5. T. Inushima, Science and Technology of Advanced Materials 7, S112 (2006);
http://dx.doi.org/10.1016/j.stam.2006.05.009
5.T. Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa, Phys. Rev. B 72, 085210 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085210
6.
6. T. Inushima, N. Kato, T. Takenobu and M. Motokawa, Phys. Stat. Sol. (a) 203, 80 (2006).
http://dx.doi.org/10.1002/pssa.200563510
7.
7. D. C. Ling, J. H. Cheng, Y. Y. Lo, C. H. Du, A. P. Chiu, C. A. Chang, and P. H. Chang, Phys. Stat. Sol. (b) 244, 4594 (2007).
http://dx.doi.org/10.1002/pssb.200777396
8.
8. M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater. 16, 537 (2006).
http://dx.doi.org/10.1002/adfm.200500553
9.
9. H. S. J. van der Zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, Phys.Rev B 54, 10081 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.10081
10.
10. Y. W. Su, K. Aravind, C. S. Wu, Watson Kuo, K. H. Chen, L. C. Chen and K. S. Chang-Liao, W. F. Su and C. D. Chen, J. Phys. D: Appl. Phys. 42, 185009 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185009
11.
11. M. Tinkham, Introduction to superconductivity, 2nd edition, 1819 and page 63, Dover publications, Inc (1996).
12.
12. K. Aravind, Y. W. Su, I. L. Ho, C. S. Wu, K. S. Chang-Liao, W. F. Su, K. H. Chen, L. C. Chen, and C. D. Chen, App.Phys.Lett 95, 092110 (2009) and references therein.
http://dx.doi.org/10.1063/1.3216071
13.
13. F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D. X. Thanh, and J. Klein, Phys. Rev. Lett. 87, 177008 (2001);
http://dx.doi.org/10.1103/PhysRevLett.87.177008
13.F. Giubileo, D. Roditchev, W. Sacks, R. Lamy and J. Klein, Europhys. Lett. 58, 764 (2002).
http://dx.doi.org/10.1209/epl/i2002-00415-5
14.
14. D. B. Haviland and Per Delsing, Phys. Rev. B 54, R6857 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.R6857
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3691830
Loading
/content/aip/journal/adva/2/1/10.1063/1.3691830
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3691830
2012-02-23
2016-12-08

Abstract

We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity.Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3691830.html;jsessionid=3u0tXhuvl6vk71WD1aikWm85.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3691830&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3691830&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3691830'
Right1,Right2,Right3,