Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3693402
1.
1. C. Boeglin, E. Beaurepaire, V. Halte, V. Lopez-Flores, C. Stamm, N. Pontius, H. A. Dürr, and J.-Y. Bigot, Nature 465, 458 (2010);
http://dx.doi.org/10.1038/nature09070
1.A. Kirilyuk, A. V. Kimel, and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2731
2.
2. E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
3.
3. B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, and W. J. M. de Jonge, Phys. Rev. Lett. 95, 267207 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.267207
4.
4. B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, M. Aeschlimann, Nature Mater. 9, 259 (2010);
http://dx.doi.org/10.1038/nmat2593
4.M. G. Münzenberg, Nature Mater. 9, 184 (2010).
http://dx.doi.org/10.1038/nmat2706
5.
5. D. Steiauf and M. Fähnle, Phys. Rev. B 79, 140401R (2009).
http://dx.doi.org/10.1103/PhysRevB.79.140401
6.
6. K. Vahaplar, A. M. Kalashnikova, A. V. Kimel, D. Hinzke, U. Nowak, R. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 103, 117201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.117201
7.
7. I. Radu, G. Woltersdorf, M. Kiessling, A. Melnikov, U. Bovensiepen, J.-U. Thiele, and C. H. Back, Phys. Rev. Lett. 102, 117201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.117201
8.
8. J. Hohlfeld, C. D. Stanciu, and A. Rebei, Appl. Phys. Lett. 94, 152504 (2009).
http://dx.doi.org/10.1063/1.3119313
9.
9. J.-Y. Bigot, M. Vomir, and E. Beaurepaire, Nature Phys. 5, 515 (2009).
http://dx.doi.org/10.1038/nphys1285
10.
10. G. P. Zhang and W. Hübner, Phys. Rev. Lett. 85, 3025 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3025
11.
11. G. P. Zhang, W. Hübner, G. Lefkidis, Y. H. Bai, and T. F. George, Nature Phys. 5, 499 (2009).
http://dx.doi.org/10.1038/nphys1315
12.
12. G. Lefkidis, G. P. Zhang, and W. Hübner, Phys. Rev. Lett. 103, 217401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.217401
13.
13. G. P. Zhang, Y. H. Bai, and T. F. George, Phys. Rev. B 80, 214415 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.214415
14.
14. G. P. Zhang, M. S. Si and T. F. George, Europhys. Lett. 94, 17005 (2011).
http://dx.doi.org/10.1209/0295-5075/94/17005
15.
15. M. Krauß, T. Roth, S. Alebrand, D. Steil, M. Cinchetti, M. Aeschlimann, and H. C. Schneider, Phys. Rev. B 80, 180407R (2009).
http://dx.doi.org/10.1103/PhysRevB.80.180407
16.
16. C. S. Wang and J. Callaway, Phys. Rev. B 9, 4897 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.4897
17.
17. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser, and W. Weber, Phys. Rev. Lett. 101, 236404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.236404
18.
18. T. Hartenstein, G. Lefkidis, W. Hübner, G. P. Zhang, and Y. Bai, J. Appl. Phys. 105, 07D305 (2009);
http://dx.doi.org/10.1063/1.3058704
18.G. P. Zhang, Y. Bai, W. Hübner, G. Lefkidis, and T. F. George, J. Appl. Phys. 103, 07B113 (2008).
http://dx.doi.org/10.1063/1.2837248
19.
19. M. S. Si and G. P. Zhang, J. Phys.: Condens. Matter 22, 076005 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/076005
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693402
Loading
/content/aip/journal/adva/2/1/10.1063/1.3693402
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3693402
2012-02-29
2016-09-28

Abstract

Laser-induced femtosecond magnetism or femtomagnetism simultaneously relies on two distinctive contributions: (a) the optical dipole interaction (ODI) between a laser field and a magnetic system and (b) the spin expectation value change (SEC) between two transition states. Surprisingly, up to now, no study has taken both contributions into account simultaneously. Here we do so by introducing a new concept of the optical spin generator, a product of SEC and ODI between transition states. In ferromagneticnickel, our first-principles calculation demonstrates that the larger the value of optical spin generator is, the larger the dynamic spin moment change is. This simple generator directly links the time-dependent spin moment change at every crystal-momentum k point to its intrinsic electronic structure and magnetic properties. Those hot spin spots are a direct manifestation of the optical spin generator, and should be the focus of future research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3693402.html;jsessionid=FVJC6TXAealbZSRERObbBwoN.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3693402&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3693402&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3693402'
Right1,Right2,Right3,