1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3693405
1.
1. C. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 21642167 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2164
2.
2. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys 105, 091101 (2009).
http://dx.doi.org/10.1063/1.3099572
3.
3. M. Bouguerra, M. Samah, M. A. Belkhir, A. Chergui, L. Gerbous, G. Nouet, D. Chateigner, R. Madelon, Chem. Phys. Let. 425, 7781 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.03.103
4.
4. Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, Nanotech. 17, 174180 (2006).
http://dx.doi.org/10.1088/0957-4484/17/1/028
5.
5. Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, Appl. Phys. Let. 89, 211909 (2006).
http://dx.doi.org/10.1063/1.2387111
6.
6. J. B. You, X. W. Zhang, H. P. Song, J. Ying, Y. Guo, A. L. yang, Z. G. Yin, N. F. Chen, and Q. S. Zhu, J. Appl. Phys. 106, 043709 (2009).
http://dx.doi.org/10.1063/1.3204028
7.
7. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, J. Appl. Phys. 103, 033105 (2008).
http://dx.doi.org/10.1063/1.2838178
8.
8. L. Irimpan, B. Krishnan, V. P. N. Nampoori, and P. Radhakrishnan, Appl. Opt. 47, 43454351 (2008).
http://dx.doi.org/10.1364/AO.47.004345
9.
9. K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Chem. Phys. Lett. 409, 208211 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.05.027
10.
10. M. Shim and P. G. Sionnest, Phys. Rev. B 64, 245342 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.245342
11.
11. S. T. Teklemichael, W. M. H. Oo, M. D. McCluskey, E. D. Walter, and D. W. Hoyt, Appl. Phys. Lett. 98, 232112 (2011).
http://dx.doi.org/10.1063/1.3598411
12.
12. D. C Look, Mat. Sc. And Engg. B 80, 383387 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00604-8
13.
13. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
14.
14. V. A. Fonoberov, and A. A. Balandin, J. Nanoelectronics and Optoelectronics 1, 1938 (2006).
http://dx.doi.org/10.1166/jno.2006.002
15.
15. C. Klingshirn, Phys. Stat. Sol. (b) 244, 30273073 (2007).
http://dx.doi.org/10.1002/pssb.200743072
16.
16. M. Sahin, Phys. Rev. B 77, 045317 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045317
17.
17. S. P. Purohit and K. C. Mathur, J. Comput. Theor. Nanosci. 7, 11311135 (2010).
http://dx.doi.org/10.1166/jctn.2010.1463
18.
18. Anchala, S. P. Purohit, and K. C. Mathur, Appl. Phys. Lett. 98, 043106 (2011).
http://dx.doi.org/10.1063/1.3548861
19.
19. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008).
http://dx.doi.org/10.1063/1.2904860
20.
20. Y. Yakar, B. Cakir, and A. Ozmen, Commun. Theor. Phys. (Beijing, China) 53, 11851189 (2010).
http://dx.doi.org/10.1088/0253-6102/53/6/39
21.
21. K. J. Kuhn, G. U. Iyengar, and S. Yee, J. Appl. Phys. 70, 50105017 (1991).
http://dx.doi.org/10.1063/1.349005
22.
22. S. Baskoutas, E. Paspalakis, A. F. Terzis, J. Phys. Condens. Matter 19, 395024(9pp) (2007).
http://dx.doi.org/10.1088/0953-8984/19/39/395024
23.
23. C. H. Liu, B. R. Xu, Phys. Lett. A 372, 882892 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.08.046
24.
24. G. Rezaei, Z. Mousazadeh and B. Vaseghi, Physica E (Amsterdam) 42, 14771481 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.122
25.
25. S. Unlu, I. Karabulut, and H. Safak, Physica E (Amsterdam) 33, 319324 (2006).
http://dx.doi.org/10.1016/j.physe.2006.03.163
26.
26. M. Sahin, J. Appl. Phys. 106, 063710 (2009).
http://dx.doi.org/10.1063/1.3225100
27.
27. W. Xie, Physica E (Amsterdam) 43, 14111414 (2011).
http://dx.doi.org/10.1016/j.physe.2011.03.019
28.
28. R. Kostic, and D. Stojanovic, J. Nanophotonics 5, 051810 (2011).
http://dx.doi.org/10.1117/1.3599444
29.
29. Anchala, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 110, 114320 (2011).
http://dx.doi.org/10.1063/1.3665687
30.
30. J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, and B. H. Zhao, Appl. Phys. Lett. 88, 063110 (2006).
http://dx.doi.org/10.1063/1.2172154
31.
31. G. Mayer, M. Fonin, U. Rudiger, R. Schneider, D. Gerthsen, N. Janßen, and R. Bratschitsch, Nanotech. 20, 075601(6pp) (2009).
http://dx.doi.org/10.1088/0957-4484/20/7/075601
32.
32. J. Zhai, X. Tao, Y. Pu, X. F. Zeng, J. F. Chen, Appl. Surface Sc. 257, 393397 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.06.091
33.
33. J. H. Han, N. Yoshimizu, C. Jiang, A. Lal, and C. H. Lee, Appl. Phys. Lett. 98, 121113 (2011).
http://dx.doi.org/10.1063/1.3570642
34.
34. Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, J. Phys. D: Appl. Phys. 40, 60716075 (2007).
http://dx.doi.org/10.1088/0022-3727/40/19/046
35.
35. Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, Appl. Phys. Lett. 89, 211909 (2006).
http://dx.doi.org/10.1063/1.2387111
36.
36. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. M. Flaig, D. Schneider, and H. Kalt, Phys. Status Solidi B 247, 14241447 (2010).
http://dx.doi.org/10.1002/pssb.200983195
37.
37. C. Delerue, M. Lannoo, Nanostructures: Theory and Modeling (Springer, Berlin, 2004).
38.
38. L. E. Brus, J. Chem. Phys. 80, 44034409 (1984).
http://dx.doi.org/10.1063/1.447218
39.
39. W. S. Baer, Phys. Rev. 154, 785789 (1967).
http://dx.doi.org/10.1103/PhysRev.154.785
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693405
Loading
/content/aip/journal/adva/2/1/10.1063/1.3693405
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3693405
2012-02-29
2014-08-30

Abstract

In this work we investigate some optical properties of semiconductorZnO spherical quantum dot embedded in an amorphous SiO2 dielectric matrix. Using the framework of effective mass approximation, we have studied intraband S-P, and P-D transitions in a singly charged spherical ZnOquantum dot. The optical properties are investigated in terms of the linear and nonlinear photoabsorption coefficient, the change in refractive index, and the third order nonlinear susceptibility and oscillator strengths. Using the parabolic confinement potential of electron in the dot these parameters are studied with the variation of the dot size, and the energy and intensity of incident radiation. The photoionization cross sections are also obtained for the different dot radii from the initial ground state of the dot. It is found that dot size, confinement potential, and incident radiation intensity affects intraband optical properties of the dot significantly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3693405.html;jsessionid=2mipf48onxfx7.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3693405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693405
10.1063/1.3693405
SEARCH_EXPAND_ITEM