Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3693406
1.
1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).
http://dx.doi.org/10.1103/PhysRevLett.7.118
2.
2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
http://dx.doi.org/10.1103/PhysRev.127.1918
3.
3. N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A37
4.
4. R. Graham and H. Haken, Z. Phys. 213, 420 (1968).
http://dx.doi.org/10.1007/BF01405384
5.
5. J. D. McMullen, J. Appl. Phys. 46, 3076 (1975).
http://dx.doi.org/10.1063/1.322001
6.
6. D. S. Bethune, J. Opt. Soc. Am. B 6, 910 (1989).
http://dx.doi.org/10.1364/JOSAB.6.000910
7.
7. A. Suzuki and M. Ashikawa, Phys. Rev. E 58, 4307 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.4307
8.
8. X. H. Wang and B. Y. Gu, Eur. Phys. J. B. 24, 323 (2001).
http://dx.doi.org/10.1007/s10051-001-8681-6
9.
9. H. J. Lee, N. L. Kang, J. Y. Sug, and S. D. Choi, Phys. Rev. B 65, 195113 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195113
10.
10. J. J. Li, Z. Y. Li, and D. Z. Zhang, Phys. Rev. B 77, 195127 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195127
11.
11. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
http://dx.doi.org/10.1364/OE.17.013429
12.
12. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nat. Photonics 3, 206 (2009).
http://dx.doi.org/10.1038/nphoton.2009.28
13.
13. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, Opt. Express 18, 6613 (2010).
http://dx.doi.org/10.1364/OE.18.006613
14.
14. V. D’Auria, C. de Lisio, A. Porzio, S. Solimeno, J. Anwar, and M. G. A. Paris, Phys. Rev. A 81, 033846 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.033846
15.
15. K. Carva, B. Sanyal, J. Fransson, and O. Eriksson, Phys. Rev. B 81, 245405 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245405
16.
16. M. Tahir and A. MacKinnon, Phys. Rev. B 81, 195444 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195444
17.
17. N. L. Kang and S. D. Choi, J. Phys. A: Math. Theor. 43, 165203 (2010).
http://dx.doi.org/10.1088/1751-8113/43/16/165203
18.
18. N. L. Kang and S. D. Choi, J. Korean Phys. Soc. 58, 150 (2011).
http://dx.doi.org/10.3938/jkps.58.1124
19.
19. N. L. Kang and S. D. Choi, J. Mod. Phys. 2, 1410 (2011).
http://dx.doi.org/10.4236/jmp.2011.211173
20.
20. G. D. Mahan, Many-Particle Physics Ch 3 (Plenum, New York, 2000).
21.
21. F. Giustino, M.-L. Cohen, and S.-G. Louie, Nature 452, 975 (2008).
http://dx.doi.org/10.1038/nature06874
22.
22. I. A. Nechaev, I. Yu. Sklyadneva, V. M. Silkin, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B 78, 085113 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085113
23.
23. S. D. Choi and O. H. Chung, Solid State Commun. 46, 717 (1983).
http://dx.doi.org/10.1016/0038-1098(83)90514-8
24.
24. S. Badjou and P. N. Argyres, Phys. Rev,. B 35, 5964 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.5964
25.
25. J. Y. Ryu and S. D. Choi, Phys. Rev. B 44, 1328 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.11328
26.
26. Y. J. Cho and S. D. Choi, Phys. Rev. B 47, 9273 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.9273
27.
27. R. P. Feynman, Phys. Rev. B 76, 769 (1949).
http://dx.doi.org/10.1103/PhysRev.76.769
28.
28. A. L. Fetter and J. D. L. Walecka, “Quantum Theory of Many–particle Systems” (MacGraw Hill, New York, 1971).
29.
29. R. D. Mattuch, “A Guide to Feynman Diagram in the Many–body Problem,” 2nd Edition, (MacGraw Hill, New York, 1976).
30.
30. C. M. Van Vilet, “Equilibrium and Non–equilibrium Statistical mechanics, (World Scientific, Singapore, 2008), Part D.
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693406
Loading
/content/aip/journal/adva/2/1/10.1063/1.3693406
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3693406
2012-02-29
2016-09-25

Abstract

A projection-diagram method is introduced for optical conductivity with lineshape functions, which takes into account the population criterion that the electron and phonondistribution functions are multiplicatively combined along with the energy conservation factors for proper interpretation of emission and absorption of phonons and photons in all the processes of electron transitions. It is further shown that the second order nonlinear optical conductivity of the system of electrons interacting with phonons, obtained using this method, is identical with that derived by using the state dependent projectors and the KC reduction identities [J. Phys. A: Math. Theor. 43, 165203 (2010)]. We expect that this method can reduce the amount of many-body calculation and can be of help in providing physical intuition into solid state quantum dynamics and representing perturbation expressions for such systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3693406.html;jsessionid=CcmTqDtVjwKIantdXpKn0Fwp.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3693406&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3693406&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3693406'
Right1,Right2,Right3,