Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. S. Bale, S. A. Soldner, and Cs. Szeles, Appl. Phys. Lett. 92, 082101 (2008).
2. G. Koley, J. Liu, and K. C. Mandal, Appl. Phys. Lett. 90, 102121 (2007).
3. W. J. McNeil, D. S. McGregor, A. E. Bolotnikov, G. W. Wright, and R. B. James, Appl. Phys. Lett. 84, 1988 (2004).
4. M. Chu, S. Terterian, D. Ting, C. C. Wang, H. K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).
5. T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Brunett, L. Franks, and R. B. James, Mater. Sci. Eng 32, 104 (2001).
6. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).
7. G. F. Knoll, Radiation detection and measurement, 3rd ed. (Wiley, New York, 2000).
8. Y. D. Xu, W. Q. Jie, P. J. Sellin, T. Wang, L. Fu, G. Q. Zha, and P. Veeramani, IEEE Trans. Nucl. Sci. 56, 2808 (2009).
9. C. X. Tang, R. K. Li, W. H. Huang, H. B. Chen, Y. C. Du, Q. Du, T. B. Du, X. Z. He, J. F. Hua, Y. Z. Lin, H. J. Qian, J. R. Shi, D. Xiang, L. X. Yan, and P. C. Yu, Chinese Physics C. 33, 146 (2009).
10. C. X. Tang, W. H. Huang, R. K. Li, Y. C. Du, L. X. Yan, J. R. Shi, Q. Du, P. C. Yu, H. B. Chen, T. B. Du, C. Cheng, and Y. Z Lin, Nucl. Instrum. Methods Phys. Res. A 608, S71 (2009).
11. L. Quan, J. Tu, Y. J. Fan, Y. H. Liu, Y. M. Zhang, J. S. Zhou, S. Liu, Y. L. Ma, J. H. Zhang, and D. Li, HIGH POWER LASER AND PARTICLE BEAMS. 19, 6 (2007). (In Chinese).
12. J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science 297, 1670 (2002).
13. Z. Burshtein, H. N. Jayatirtha, A. Burger, J. F. Butler, B. Apotovsky, and F. P. Doty, Appl. Phys. Lett. 63, 102 (1993).
14. C. Canali, M. Martini, G. Ottaviani, and K. R. Zanio, Phys. Rev. B 4, 422 (1971).
15. T. J. Murphy, C. W. Barnes, R. R. Berggren, P. Bradley, S. E. Caldwell et al., Rev. Sci. Instrum. 72, 773 (2001).

Data & Media loading...


Article metrics loading...



A CdZnTe detector based on high-quality Cd0.9Zn0.1Te crystals was developed and tested as a monitor in high-intensity radiation fields. The current–voltage measurements were performed using thermally evaporated Au contacts deposited on the crystals, which revealed resistivity of 1010 Ω·cm. Typical leakage current for the planar devices was ∼3 nA for a field strength of 1000 V·cm–1. The test results show that the CdZnTe detector has a fast time response, with a rise time of approximately 2 ns, when exposed to transient and pulsed irradiation of X-rays or electron beams. The decay of current curves is observed and discussed according to charge carrier trapping effects and space-charge accumulation mechanisms. It is suggested that the current decreases quickly with strengthening of the electric field, possibly because of charge de-trapping.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd