1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Time response of Cd0.9Zn0.1Te crystals under transient and pulsed irradiation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3693970
1.
1. D. S. Bale, S. A. Soldner, and Cs. Szeles, Appl. Phys. Lett. 92, 082101 (2008).
http://dx.doi.org/10.1063/1.2883924
2.
2. G. Koley, J. Liu, and K. C. Mandal, Appl. Phys. Lett. 90, 102121 (2007).
http://dx.doi.org/10.1063/1.2712496
3.
3. W. J. McNeil, D. S. McGregor, A. E. Bolotnikov, G. W. Wright, and R. B. James, Appl. Phys. Lett. 84, 1988 (2004).
http://dx.doi.org/10.1063/1.1668332
4.
4. M. Chu, S. Terterian, D. Ting, C. C. Wang, H. K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).
http://dx.doi.org/10.1063/1.1412588
5.
5. T. E. Schlesinger, J. E. Toney, H. Yoon, E. Y. Lee, B. A. Brunett, L. Franks, and R. B. James, Mater. Sci. Eng 32, 104 (2001).
6.
6. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).
http://dx.doi.org/10.1109/23.958705
7.
7. G. F. Knoll, Radiation detection and measurement, 3rd ed. (Wiley, New York, 2000).
8.
8. Y. D. Xu, W. Q. Jie, P. J. Sellin, T. Wang, L. Fu, G. Q. Zha, and P. Veeramani, IEEE Trans. Nucl. Sci. 56, 2808 (2009).
http://dx.doi.org/10.1109/TNS.2009.2026277
9.
9. C. X. Tang, R. K. Li, W. H. Huang, H. B. Chen, Y. C. Du, Q. Du, T. B. Du, X. Z. He, J. F. Hua, Y. Z. Lin, H. J. Qian, J. R. Shi, D. Xiang, L. X. Yan, and P. C. Yu, Chinese Physics C. 33, 146 (2009).
http://dx.doi.org/10.1088/1674-1137/33/S2/038
10.
10. C. X. Tang, W. H. Huang, R. K. Li, Y. C. Du, L. X. Yan, J. R. Shi, Q. Du, P. C. Yu, H. B. Chen, T. B. Du, C. Cheng, and Y. Z Lin, Nucl. Instrum. Methods Phys. Res. A 608, S71 (2009).
http://dx.doi.org/10.1016/j.nima.2009.05.088
11.
11. L. Quan, J. Tu, Y. J. Fan, Y. H. Liu, Y. M. Zhang, J. S. Zhou, S. Liu, Y. L. Ma, J. H. Zhang, and D. Li, HIGH POWER LASER AND PARTICLE BEAMS. 19, 6 (2007). (In Chinese).
12.
12. J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science 297, 1670 (2002).
http://dx.doi.org/10.1126/science.1074374
13.
13. Z. Burshtein, H. N. Jayatirtha, A. Burger, J. F. Butler, B. Apotovsky, and F. P. Doty, Appl. Phys. Lett. 63, 102 (1993).
http://dx.doi.org/10.1063/1.109726
14.
14. C. Canali, M. Martini, G. Ottaviani, and K. R. Zanio, Phys. Rev. B 4, 422 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.422
15.
15. T. J. Murphy, C. W. Barnes, R. R. Berggren, P. Bradley, S. E. Caldwell et al., Rev. Sci. Instrum. 72, 773 (2001).
http://dx.doi.org/10.1063/1.1319356
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693970
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Room-temperature current–voltage (IV) characteristics of the CZT Au/CdZnTe/Au detector.

Image of FIG. 2.

Click to view

FIG. 2.

Experimental setup. (a) Assembly diagram of the CZT detector. (b) Schematic diagram of SRPX.

Image of FIG. 3.

Click to view

FIG. 3.

Schematic diagram of TTX.

Image of FIG. 4.

Click to view

FIG. 4.

Time-resolved pulsed electron beam response transients in the CZT detector at TTX, with energy of 16 MeV and rise time of 2 ps per pulse. Experimental waveforms were recorded by a digital oscilloscope with bandwidth of 12.5 GHz.

Image of FIG. 5.

Click to view

FIG. 5.

Time-resolved pulsed X-ray response transients in the CZT detector at SRPX, with peak energy of 100 KeV and rise time of 200 ps per pulse. Experimental waveforms recorded by a digital oscilloscope with bandwidth of 4 GHz.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3693970
2012-03-05
2014-04-19

Abstract

A CdZnTe detector based on high-quality Cd0.9Zn0.1Te crystals was developed and tested as a monitor in high-intensity radiation fields. The current–voltage measurements were performed using thermally evaporated Au contacts deposited on the crystals, which revealed resistivity of 1010 Ω·cm. Typical leakage current for the planar devices was ∼3 nA for a field strength of 1000 V·cm–1. The test results show that the CdZnTe detector has a fast time response, with a rise time of approximately 2 ns, when exposed to transient and pulsed irradiation of X-rays or electron beams. The decay of current curves is observed and discussed according to charge carrier trapping effects and space-charge accumulation mechanisms. It is suggested that the current decreases quickly with strengthening of the electric field, possibly because of charge de-trapping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3693970.html;jsessionid=jlg8ki2gmfu1.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3693970&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Time response of Cd0.9Zn0.1Te crystals under transient and pulsed irradiation
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693970
10.1063/1.3693970
SEARCH_EXPAND_ITEM