1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Dissociation of water on Ti-decorated fullerene clusters
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3693991
1.
1. G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, Phys. Today 57, 39 (2004).
http://dx.doi.org/10.1063/1.1878333
2.
2. J. A. Turner, Science 305, 972 (2004).
http://dx.doi.org/10.1126/science.1103197
3.
3. M. K. Kostov, E. E. Santiso, A. M. George, K. E. Gubbins, and M. B. Nardelli, Phys. Rev. Lett. 95, 136105 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.136105
4.
4. Y. Lei, Z. X. Guo, W. Zhu, S. Meng, and Z. Zhang, Appl. Phys. Lett. 91, 161906 (2007).
http://dx.doi.org/10.1063/1.2793182
5.
5. L. Huang, Y.-C. Liu, K. E. Gubbins, and M. B. Nardelli, Appl. Phys. Lett. 96, 063111 (2010).
http://dx.doi.org/10.1063/1.3302469
6.
6. Y. Liu, L. Huang, K. E. Gubbins, and M. B. Nardelli, J. Chem. Phys. 133, 084510 (2010).
http://dx.doi.org/10.1063/1.3469813
7.
7. T. Yildirim, J. Íñiguez, and S. Ciraci, Phys. Rev. B 72, 153403 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.153403
8.
8. T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.175501
9.
9. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582 (2005).
http://dx.doi.org/10.1021/ja0550125
10.
10. E. Durgun, S. Ciraci, and T. Yildirim, Phys. Rev. B 77, 085405 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085405
11.
11. M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, Phys. Rev. Lett. 100, 206806 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206806
12.
12. A. Hirsch and M. Brettreich, Fullerenes: Chemistry and Reactions (Wiley-VCH, 2005).
13.
13. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
14.
14. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
15.
15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
16.
16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
17.
17. G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
18.
18. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
19.
19. J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/074203
20.
20. D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
21.
21. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
22.
22. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
23.
23. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).
http://dx.doi.org/10.1063/1.458517
24.
24. B. Silvi and A. Savin, Nature 371, 683 (1994).
http://dx.doi.org/10.1038/371683a0
25.
25. A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 36, 1808 (1997).
http://dx.doi.org/10.1002/anie.199718081
26.
26. J. K. Burdett and T. A. McCormick, J. Phys. Chem. A 102, 6366 (1998).
http://dx.doi.org/10.1021/jp9820774
27.
27. I. M. L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, and T. P. Martin, J. Chem. Phys. 111, 6787 (1999).
http://dx.doi.org/10.1063/1.480018
28.
28. A. Stone and D. Wales, Chem. Phys. Lett. 128, 501 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80661-3
29.
29. S. Yang, M. Yoon, E. Wang, and Z. Zhang, J. Chem. Phys. 129, 134707 (2008).
http://dx.doi.org/10.1063/1.2981043
30.
30. A. Stroppa and G. Kresse, New J. Phys. 10, 063020 (2008).
http://dx.doi.org/10.1088/1367-2630/10/6/063020
31.
31. H. Metiu, J. Chem. Phys. 128, 182501 (2008).
http://dx.doi.org/10.1063/1.2894545
32.
32. Y. Xue, J. Chem. Phys. 136, 024702 (2012).
http://dx.doi.org/10.1063/1.3675494
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693991
Loading
/content/aip/journal/adva/2/1/10.1063/1.3693991
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3693991
2012-03-05
2014-12-19

Abstract

Spin-polarized density functional theory calculations have been applied to investigate water dissociation catalyzed by Ti adsorbed on icosahedral C20, C60 and C80fullerene clusters, in order to elucidate the roles that cluster size and Ti-cluster interaction play in the proposed hydrogen generation reaction. We find that two water molecules can be dissociated consecutively by overcoming moderate energy barriers of a few tenths of eV, accompanied by the generation of a H2 molecule for all three clusters. Depending on the cluster size, the fullerene clusters may participate directly in water splitting or indirectly through stereochemical control of the Ti adsorption sites. Our results suggest that fullerene clusters can serve as a flexible platform for rational design of nanostructured catalysts for hydrogen generation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3693991.html;jsessionid=2nqkv1ehtkjnt.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3693991&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dissociation of water on Ti-decorated fullerene clusters
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693991
10.1063/1.3693991
SEARCH_EXPAND_ITEM