1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dissociation of water on Ti-decorated fullerene clusters
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3693991
1.
1. G. W. Crabtree, M. S. Dresselhaus, and M. V. Buchanan, Phys. Today 57, 39 (2004).
http://dx.doi.org/10.1063/1.1878333
2.
2. J. A. Turner, Science 305, 972 (2004).
http://dx.doi.org/10.1126/science.1103197
3.
3. M. K. Kostov, E. E. Santiso, A. M. George, K. E. Gubbins, and M. B. Nardelli, Phys. Rev. Lett. 95, 136105 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.136105
4.
4. Y. Lei, Z. X. Guo, W. Zhu, S. Meng, and Z. Zhang, Appl. Phys. Lett. 91, 161906 (2007).
http://dx.doi.org/10.1063/1.2793182
5.
5. L. Huang, Y.-C. Liu, K. E. Gubbins, and M. B. Nardelli, Appl. Phys. Lett. 96, 063111 (2010).
http://dx.doi.org/10.1063/1.3302469
6.
6. Y. Liu, L. Huang, K. E. Gubbins, and M. B. Nardelli, J. Chem. Phys. 133, 084510 (2010).
http://dx.doi.org/10.1063/1.3469813
7.
7. T. Yildirim, J. Íñiguez, and S. Ciraci, Phys. Rev. B 72, 153403 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.153403
8.
8. T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.175501
9.
9. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. 127, 14582 (2005).
http://dx.doi.org/10.1021/ja0550125
10.
10. E. Durgun, S. Ciraci, and T. Yildirim, Phys. Rev. B 77, 085405 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085405
11.
11. M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, Phys. Rev. Lett. 100, 206806 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.206806
12.
12. A. Hirsch and M. Brettreich, Fullerenes: Chemistry and Reactions (Wiley-VCH, 2005).
13.
13. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
14.
14. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
15.
15. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
16.
16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
17.
17. G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
18.
18. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
19.
19. J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/074203
20.
20. D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 128, 134106 (2008).
http://dx.doi.org/10.1063/1.2841941
21.
21. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
22.
22. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
23.
23. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).
http://dx.doi.org/10.1063/1.458517
24.
24. B. Silvi and A. Savin, Nature 371, 683 (1994).
http://dx.doi.org/10.1038/371683a0
25.
25. A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angew. Chem. Int. Ed. 36, 1808 (1997).
http://dx.doi.org/10.1002/anie.199718081
26.
26. J. K. Burdett and T. A. McCormick, J. Phys. Chem. A 102, 6366 (1998).
http://dx.doi.org/10.1021/jp9820774
27.
27. I. M. L. Billas, C. Massobrio, M. Boero, M. Parrinello, W. Branz, F. Tast, N. Malinowski, M. Heinebrodt, and T. P. Martin, J. Chem. Phys. 111, 6787 (1999).
http://dx.doi.org/10.1063/1.480018
28.
28. A. Stone and D. Wales, Chem. Phys. Lett. 128, 501 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80661-3
29.
29. S. Yang, M. Yoon, E. Wang, and Z. Zhang, J. Chem. Phys. 129, 134707 (2008).
http://dx.doi.org/10.1063/1.2981043
30.
30. A. Stroppa and G. Kresse, New J. Phys. 10, 063020 (2008).
http://dx.doi.org/10.1088/1367-2630/10/6/063020
31.
31. H. Metiu, J. Chem. Phys. 128, 182501 (2008).
http://dx.doi.org/10.1063/1.2894545
32.
32. Y. Xue, J. Chem. Phys. 136, 024702 (2012).
http://dx.doi.org/10.1063/1.3675494
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693991
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Density of states (DOS) projected onto the 3d orbitals of Ti and the 2p orbitals of carbon atoms to which Ti is bound for C20 (upper), C60 (middle) and C80 (lower figure). Energy zero is set at the Fermi level. For each cluster, the inset on the left (right) shows the optimum adsorption geometry (the isosurface plot of the electron density difference). The blue (red) region represents electron accumulation (depletion). We have also shown the isosurface plot of the electron localization function (ELF) at η=0.72. Only the magnified view of the region surrounding Ti is shown.

Image of FIG. 2.

Click to view

FIG. 2.

Reaction path for the splitting of the first water molecule on Ti-decorated C20 (a), C60 (b), and C80 (c). The insets show the atomic configurations at selected images along the reaction path. The large gray, small gray and red spheres represent Ti, H and O atoms respectively. Only the magnified view of the region surrounding Ti is shown except for the initial and final states. A dynamic bond scheme with a cutoff length of 2.3 Å is adopted to help visualizing bond breaking/formation during reaction.

Image of FIG. 3.

Click to view

FIG. 3.

Density of states projected onto Ti and the water O and H atoms at the initial state (upper), transition state (middle), and final state (lower figure) for C60. The insets on the left show isosurface plot of electron density difference. The blue (red) region represents electron accumulation (depletion). The insets on the right show isosurface plot of ELF at η = 0.72. Only the magnified view of the region surrounding Ti is shown.

Image of FIG. 4.

Click to view

FIG. 4.

Reaction path for the splitting of the second water molecule on Ti-decorated C20 (a), C60 (b), and C80 (c) as in Fig. 2. We have also shown isosurface plot of ELF at η = 0.72 for the initial, transition and final states.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3693991
2012-03-05
2014-04-16

Abstract

Spin-polarized density functional theory calculations have been applied to investigate water dissociation catalyzed by Ti adsorbed on icosahedral C20, C60 and C80fullerene clusters, in order to elucidate the roles that cluster size and Ti-cluster interaction play in the proposed hydrogen generation reaction. We find that two water molecules can be dissociated consecutively by overcoming moderate energy barriers of a few tenths of eV, accompanied by the generation of a H2 molecule for all three clusters. Depending on the cluster size, the fullerene clusters may participate directly in water splitting or indirectly through stereochemical control of the Ti adsorption sites. Our results suggest that fullerene clusters can serve as a flexible platform for rational design of nanostructured catalysts for hydrogen generation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3693991.html;jsessionid=10wl9ckc55hkp.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3693991&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dissociation of water on Ti-decorated fullerene clusters
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3693991
10.1063/1.3693991
SEARCH_EXPAND_ITEM