Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3694892
1.
1. A. Fert, Thin Solid Films 517, 2 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.172
2.
2. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
3. S. Bandyopadhyay and M. Cahay, Introduction to Spintronics (CRC, Boca Raton, 2008).
4.
4. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Acta Physica Slovaca 57, 565 (2007).
http://dx.doi.org/10.2478/v10155-010-0086-8
5.
5. D. D. Awschalom, M. E. Flatte, and N. Samarth, Sci. Am. 286, 66 (2002).
http://dx.doi.org/10.1038/scientificamerican0602-66
6.
6. S. Das Sarma, Am. Sci. 89, 516 (2001).
http://dx.doi.org/10.1511/2001.6.516
7.
7. J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.146801
8.
8. T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett. 88, 126601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.126601
9.
9. I. Zutic, J. Fabian, S. Das Sarma, Appl. Phys. Lett. 79, 1558 (2001).
http://dx.doi.org/10.1063/1.1399002
10.
10. M. Johnson, Science 260, 320 (1993).
http://dx.doi.org/10.1126/science.260.5106.320
11.
11. X. F. Wang, P. Vasilopoulos, and F. M. Peeters, Phys. Rev. B 65, 165217 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165217
12.
12. R. G. Mani, W. B. Johnson, V. Narayanamurti, V. Privman, Y. H. Zhang, Physica E 12, 152 (2002).
http://dx.doi.org/10.1016/S1386-9477(01)00290-9
13.
13. S. Bandyopadhyay and V. P. Roychowdhury, Superlattices Microstruct. 22, 411 (1997).
http://dx.doi.org/10.1006/spmi.1997.0365
14.
14. S. Bandyopadhyay, Phys. Rev. B 61, 13813 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.13813
15.
15. J. Fabian and S. Das Sarma, Journal of Vacuum Science and Technology B 17, 1708 (1999).
http://dx.doi.org/10.1116/1.590813
16.
16. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4313
17.
17. D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, Appl. Phys. Lett. 73, 1580 (1998).
http://dx.doi.org/10.1063/1.122210
18.
18. M. Shen, S. Saikin, M. C. Cheng, V. Privman, Mathematics and Computers in Simulation 65, 351 (2004).
http://dx.doi.org/10.1016/j.matcom.2004.01.007
19.
19. L. Kong, G. Du, Y. Wang, J. Kang, R. Han, and X. Liu, International Conference on Simulation of Semiconductor Processes and Devices (Tokyo, Japan, 2005), pp. 175178.
20.
20. S. Pramanik, S. Bandyopadhyay, and M. Cahay, Third IEEE Conference on Nanotechnology (San Fransisco, CA, 2003), vol. 2, pp. 8790.
21.
21. S. Pramanik, S. Bandyopadhyay, M. Cahay, Phys. Rev. B 68, 075313 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.075313
22.
22. A. Bournel, P. Dollfus, P. Bruno, P. Hesto, Materials Science Forum 297-298, 205212 (1999).
http://dx.doi.org/10.4028/www.scientific.net/MSF.297-298.205
23.
23. A. Kamra, B. Ghosh and T. K. Ghosh, J. Appl. Phys. 108, 054505 (2010).
http://dx.doi.org/10.1063/1.3481063
24.
24. J. Fabian, I. Zutic, and S. Das Sarma, Phys. Rev. B 66, 165301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165301
25.
25. G. Schmidt and L. W. Molenkamp, Semicond. Sci. Technol. 17, 310 (2002).
http://dx.doi.org/10.1088/0268-1242/17/4/304
26.
26. F. Mireles and G. Kirczenow, Phys. Rev. B 64, 024426 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.024426
27.
27. S. Saikin, M. Shen, M. C. Cheng, and V. Privman, (unpublished), www.arXiv.org/cond-mat/0212610.
28.
28. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).
http://dx.doi.org/10.1103/RevModPhys.55.645
29.
29. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer-Verlag, Wien, 1989).
30.
30. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
http://dx.doi.org/10.1103/PhysRev.100.580
31.
31. E. I. Rashba, Sov. Phys. Semicond. 2, 1109 (1960).
32.
32. Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
http://dx.doi.org/10.1088/0022-3719/17/33/015
33.
33. E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys. Rev. B 50, 8523 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.8523
34.
34. M. I. D’yakonov and V. I. Perel, Sov. Phys. Solid State 13, 3023 (1972).
35.
35. J. Elliott, Phys. Rev. 96, 266 (1954).
http://dx.doi.org/10.1103/PhysRev.96.266
36.
36. Pil Hun Song and K. W. Kim, Phys. Rev. B 66, 035207 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.035207
37.
37. I. Vurgaftmana, J. R. Meyer, L. R. Ram-Mohan, Appl. Phys. Rev. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
38.
38. E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, J. Appl. Phys. 104, 063711 (2008).
http://dx.doi.org/10.1063/1.2977758
39.
39. J. Lee, H. N. Spector, J. Appl. Phys. 54, 3921 (1983).
http://dx.doi.org/10.1063/1.332565
40.
40. A. V. Borzdov, D. V. Pozdnyakov, V. M. Borzdov, A. A. Orlikovsky, V. V. V’yurkov, Russian Microelectronics 39, 411 (2010).
http://dx.doi.org/10.1134/S1063739710060065
41.
41. J. M. Jancu, R. Scholz, E. A. de Andrada e Silva, G. C. La Rocca, Physical Review B 72, 193201 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.193201
42.
42. G. B. Tait and C. M. Krowne, Solid-State Electronics 30, 1317 (1987).
http://dx.doi.org/10.1016/0038-1101(87)90058-X
43.
43. S. Asmontas and R. Raguotis, Acta Physica Polonica A 113, 929 (2008).
44.
44. T. Sasaki, T. Oikawa, T. Suzuki, M. Shiraishi, Y. Suzuki, K. Noguchi, Appl. Phys. Lett. 96, 122101 (2010).
http://dx.doi.org/10.1063/1.3367748
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3694892
Loading
/content/aip/journal/adva/2/1/10.1063/1.3694892
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3694892
2012-03-07
2016-09-28

Abstract

We use semiclassical Monte Carlo approach to investigate spin polarized transport in InP and InSbnanowires. D’yakonov-Perel (DP) relaxation and Elliott-Yafet (EY) relaxation are the two main relaxation mechanisms for spin dephasing in III-V channels. The DP relaxation occurs because of bulk inversion asymmetry (Dresselhaus spin-orbit interaction) and structural inversion asymmetry (Rashba spin-orbit interaction). The injection polarization direction studied is that along the length of the channel. The dephasing rate is found to be very strong for InSb as compared to InP which has larger spin dephasing lengths. The ensemble averaged spin components vary differently for both InP and InSbnanowires. The steady state spin distribution also shows a difference between the two III-Vnanowires.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3694892.html;jsessionid=bVL01piEB3zq9zj8VH0RyNED.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3694892&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3694892&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3694892'
Right1,Right2,Right3,