1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Oscillatory exchange bias and training effects in nanocrystalline Pr0.5Ca0.5MnO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3696033
1.
1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
2. A. G. Biternas, U. Nowak, and R. W. Chantrell, Phys. Rev. B 80, 134419 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.134419
3.
3. S. K. Giri, A. Poddar, and T. K. Nath, AIP Advances 1, 032110 (2011).
http://dx.doi.org/10.1063/1.3623428
4.
4. Christian Binek, Xi He, and Srinivas Polisetty, Phys. Rev. B 72, 054408 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054408
5.
5. A. Hoffmann, Phys. Rev. Lett. 93, 097203 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.097203
6.
6. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriňach, J. S. Muňoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
7.
7. R. L. Stamps, J. Phys. D 33, R247 (2000).
http://dx.doi.org/10.1088/0022-3727/33/23/201
8.
8. E. Dagotto, Science 309, 257 (2005).
http://dx.doi.org/10.1126/science.1107559
9.
9. For a review see Y. Tomioko and Y. Tokura, in Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon and Breach, New York (2000)).
10.
10. A. Asamitsu, Y. Tomioka, H. Kuwahara and Y. Tokura, Nature (London) 388, 50 (1997).
http://dx.doi.org/10.1038/40363
11.
11. S. S. Rao, K. N. Anuradha, S. Sarangi, and S. V. Bhat, Appl. Phys. Lett. 87, 182503 (2005);
http://dx.doi.org/10.1063/1.2125129
11.S. S. Rao, S. Tripathi, D. Pandey, and S. V. Bhat, Phys. Rev. B 74, 144416 (2006);
http://dx.doi.org/10.1103/PhysRevB.74.144416
11.S S Rao and S V Bhat, J. Phys.: Condens. Matter 21 196005 (2009).
http://dx.doi.org/10.1088/0953-8984/21/19/196005
12.
12. S. Narayana Jammalamadaka, S. S. Rao, J. Vanacken, A. Stesmans, S. V. Bhat and V. V. Moshchalkov, AIP ADVANCES 1, 042151 (2011).
http://dx.doi.org/10.1063/1.3664786
13.
13. S. S. Rao and S. V. Bhat J. Phys.: Condens. Mater 22, 116004 (2010).
http://dx.doi.org/10.1088/0953-8984/22/11/116004
14.
14. S. Karmakar, S. Taran, E. Bose, B. K. Chaudhuri, C. P. Sun, C. L. Huang, and H. D. Yang, Phys. Rev. B 77, 144409 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.144409
15.
15. E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu and F. Schuth, Nano. Lett. 6, 2977 (2006).
http://dx.doi.org/10.1021/nl060528n
16.
16. G. C. Milward, M. J. Calderón and P. B. Littlewood, Nature 433, 607 (2005).
http://dx.doi.org/10.1038/nature03300
17.
17. Myron B. Salamon and Marcelo Jaime, Rev. Mod. Phys 73, 583 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.583
18.
18. J. S. Parker, L. Wang, K. A. Steiner, P. A. Crowell and C Leighton, Phy. Rev. Lett. 97, 227206 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.227206
19.
19. Yang and Chien, Phy. Rev. Lett. 90, 147201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.147201
20.
20. P. Calvani, G. De Marzi, P. Dore, S. Lupi, P. Maselli, F. D’Amore, and S. Gagliardi, Phys. Rev. Lett. 81, 4504 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4504
21.
21. A. Nucara, P. Maselli, P. Calvani, R. Sopracase, M. Ortolani, G. Gruener, M. Cestelli Guidi, U. Schade, and J. García, Phys. Rev. Lett. 101, 066407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.066407
22.
22. J. C. Loudon, S. Cox, A. J. Williams, J. P. Attfield, P. B. Littlewood, P. A. Midgley, and N. D. Mathur, Phys. Rev. Lett. 94, 097202 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.097202
23.
23. S. Cox, E. Rosten, J. C. Chapman, S. Kos, M. J. Calderón, D.-J. Kang, P. B. Littlewood, P. A. Midgley, and N. D. Mathur, Phys. Rev. B. 73, 132401 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132401
24.
24. D. Sánchez, M. J. Calderón, J. Sánchez-Benítez, A. J. Williams, J. P. Attfield, P. A. Midgley, and N. D. Mathur, Phys. Rev. B. 77, 092411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.092411
25.
25. S. Dong, F. Gao, Z. Q. Wang, and J. M. Liu and Z. F. Ren, Appl. Phys. Lett. 90, 082508 (2007).
http://dx.doi.org/10.1063/1.2709911
26.
26. S. Demirtas, A. R. Koymen and H. Zeng, J. Phys.: Condens. Matter 16, L213L220 (2004).
http://dx.doi.org/10.1088/0953-8984/16/15/L02
27.
27. S. R. Ali, M. B. Janjua, M. Fecioru-Morariu, D. Lott, C. J. P. Smits and G. Güntherodt, Phys. Rev. B 82, 020402R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.020402
28.
28. Po-Hsiang Huang, Hsin-Hung Huang, and Chih-Huang Lai, Appl. Phys. Lett. 90, 062509 (2007).
http://dx.doi.org/10.1063/1.2437720
29.
29. D. Niebieskikwiat and M. B. Salamon, Phys.Rev.B 72, 174422 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174422
30.
30. Wan-Guo Huang, Xiang-Qun Zhang, Hai-Feng Du, Ren-Fu Yang, Yan-Kun Tang, Young Sun and Zhao-Hua Cheng, J. Phys.: Condens. Matter 20, 445209 (2008).
http://dx.doi.org/10.1088/0953-8984/20/44/445209
31.
31. Christian Binek, Phys. Rev. B 70, 014421 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.014421
32.
32. Paccard, D. , Schlenker, C. , Massenet, O. , Montmory, R. and Yelon, A. , Phys. Status Solidi b 16, 301 (1966).
http://dx.doi.org/10.1002/pssb.19660160131
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3696033
Loading
/content/aip/journal/adva/2/1/10.1063/1.3696033
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3696033
2012-03-09
2014-11-27

Abstract

We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n ≥ 1.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3696033.html;jsessionid=1rhr9t0ccw1h6.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3696033&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oscillatory exchange bias and training effects in nanocrystalline Pr0.5Ca0.5MnO3
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3696033
10.1063/1.3696033
SEARCH_EXPAND_ITEM