1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Oscillatory exchange bias and training effects in nanocrystalline Pr0.5Ca0.5MnO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3696033
1.
1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
2. A. G. Biternas, U. Nowak, and R. W. Chantrell, Phys. Rev. B 80, 134419 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.134419
3.
3. S. K. Giri, A. Poddar, and T. K. Nath, AIP Advances 1, 032110 (2011).
http://dx.doi.org/10.1063/1.3623428
4.
4. Christian Binek, Xi He, and Srinivas Polisetty, Phys. Rev. B 72, 054408 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054408
5.
5. A. Hoffmann, Phys. Rev. Lett. 93, 097203 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.097203
6.
6. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriňach, J. S. Muňoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
7.
7. R. L. Stamps, J. Phys. D 33, R247 (2000).
http://dx.doi.org/10.1088/0022-3727/33/23/201
8.
8. E. Dagotto, Science 309, 257 (2005).
http://dx.doi.org/10.1126/science.1107559
9.
9. For a review see Y. Tomioko and Y. Tokura, in Colossal Magnetoresistive Oxides, edited by Y. Tokura (Gordon and Breach, New York (2000)).
10.
10. A. Asamitsu, Y. Tomioka, H. Kuwahara and Y. Tokura, Nature (London) 388, 50 (1997).
http://dx.doi.org/10.1038/40363
11.
11. S. S. Rao, K. N. Anuradha, S. Sarangi, and S. V. Bhat, Appl. Phys. Lett. 87, 182503 (2005);
http://dx.doi.org/10.1063/1.2125129
11.S. S. Rao, S. Tripathi, D. Pandey, and S. V. Bhat, Phys. Rev. B 74, 144416 (2006);
http://dx.doi.org/10.1103/PhysRevB.74.144416
11.S S Rao and S V Bhat, J. Phys.: Condens. Matter 21 196005 (2009).
http://dx.doi.org/10.1088/0953-8984/21/19/196005
12.
12. S. Narayana Jammalamadaka, S. S. Rao, J. Vanacken, A. Stesmans, S. V. Bhat and V. V. Moshchalkov, AIP ADVANCES 1, 042151 (2011).
http://dx.doi.org/10.1063/1.3664786
13.
13. S. S. Rao and S. V. Bhat J. Phys.: Condens. Mater 22, 116004 (2010).
http://dx.doi.org/10.1088/0953-8984/22/11/116004
14.
14. S. Karmakar, S. Taran, E. Bose, B. K. Chaudhuri, C. P. Sun, C. L. Huang, and H. D. Yang, Phys. Rev. B 77, 144409 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.144409
15.
15. E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu and F. Schuth, Nano. Lett. 6, 2977 (2006).
http://dx.doi.org/10.1021/nl060528n
16.
16. G. C. Milward, M. J. Calderón and P. B. Littlewood, Nature 433, 607 (2005).
http://dx.doi.org/10.1038/nature03300
17.
17. Myron B. Salamon and Marcelo Jaime, Rev. Mod. Phys 73, 583 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.583
18.
18. J. S. Parker, L. Wang, K. A. Steiner, P. A. Crowell and C Leighton, Phy. Rev. Lett. 97, 227206 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.227206
19.
19. Yang and Chien, Phy. Rev. Lett. 90, 147201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.147201
20.
20. P. Calvani, G. De Marzi, P. Dore, S. Lupi, P. Maselli, F. D’Amore, and S. Gagliardi, Phys. Rev. Lett. 81, 4504 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4504
21.
21. A. Nucara, P. Maselli, P. Calvani, R. Sopracase, M. Ortolani, G. Gruener, M. Cestelli Guidi, U. Schade, and J. García, Phys. Rev. Lett. 101, 066407 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.066407
22.
22. J. C. Loudon, S. Cox, A. J. Williams, J. P. Attfield, P. B. Littlewood, P. A. Midgley, and N. D. Mathur, Phys. Rev. Lett. 94, 097202 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.097202
23.
23. S. Cox, E. Rosten, J. C. Chapman, S. Kos, M. J. Calderón, D.-J. Kang, P. B. Littlewood, P. A. Midgley, and N. D. Mathur, Phys. Rev. B. 73, 132401 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132401
24.
24. D. Sánchez, M. J. Calderón, J. Sánchez-Benítez, A. J. Williams, J. P. Attfield, P. A. Midgley, and N. D. Mathur, Phys. Rev. B. 77, 092411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.092411
25.
25. S. Dong, F. Gao, Z. Q. Wang, and J. M. Liu and Z. F. Ren, Appl. Phys. Lett. 90, 082508 (2007).
http://dx.doi.org/10.1063/1.2709911
26.
26. S. Demirtas, A. R. Koymen and H. Zeng, J. Phys.: Condens. Matter 16, L213L220 (2004).
http://dx.doi.org/10.1088/0953-8984/16/15/L02
27.
27. S. R. Ali, M. B. Janjua, M. Fecioru-Morariu, D. Lott, C. J. P. Smits and G. Güntherodt, Phys. Rev. B 82, 020402R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.020402
28.
28. Po-Hsiang Huang, Hsin-Hung Huang, and Chih-Huang Lai, Appl. Phys. Lett. 90, 062509 (2007).
http://dx.doi.org/10.1063/1.2437720
29.
29. D. Niebieskikwiat and M. B. Salamon, Phys.Rev.B 72, 174422 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174422
30.
30. Wan-Guo Huang, Xiang-Qun Zhang, Hai-Feng Du, Ren-Fu Yang, Yan-Kun Tang, Young Sun and Zhao-Hua Cheng, J. Phys.: Condens. Matter 20, 445209 (2008).
http://dx.doi.org/10.1088/0953-8984/20/44/445209
31.
31. Christian Binek, Phys. Rev. B 70, 014421 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.014421
32.
32. Paccard, D. , Schlenker, C. , Massenet, O. , Montmory, R. and Yelon, A. , Phys. Status Solidi b 16, 301 (1966).
http://dx.doi.org/10.1002/pssb.19660160131
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3696033
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Isothermal M-H curves measured under ZFC conditions at different T's for PCMO10. The horizontal and vertical loop shifts can be clearly noticed from these curves. To show that the FC causes the vertical as well as horizontal loop shift, a FC MH loop has also been shown at 5 K. As a representative figure, we also displayed field cooled (FC) MH loop at 5 K measured under field-cooling strength of 10 kOe.

Image of FIG. 2.

Click to view

FIG. 2.

(a) T variation of oscillatory exchange bias field (OEB) (b) Variation of ΔM with FC (c) M-H loops resulted from one step and two step field cooling process. Symmetric MH loops are evident after two step process (d) H EB and H C variation with FC. The red curve is the fit obtained from equation (1), scattered points are the experimental data.

Image of FIG. 3.

Click to view

FIG. 3.

Consecutively measured seven MH loops after field cooling PCMO10 in the presence of 10 kOe. Top left inset shows the enlarged view to reveal the shift in the MH loop to the lower fields as the loop number (n) increases. Bottom right inset shows the variation of HEB on ‘n’ at 5 K after FC in 10 kOe. The solid line illustrates the best fitting with the power law for n ≥ 2. The obtained fitting parameters are HEB = 513 Oe and α = 0.35.

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3696033
2012-03-09
2014-04-20

Abstract

We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n ≥ 1.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3696033.html;jsessionid=d9260io3tci4i.x-aip-live-01?itemId=/content/aip/journal/adva/2/1/10.1063/1.3696033&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Oscillatory exchange bias and training effects in nanocrystalline Pr0.5Ca0.5MnO3
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3696033
10.1063/1.3696033
SEARCH_EXPAND_ITEM