Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3696883
1.
1. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323, 610 (2009).
http://dx.doi.org/10.1126/science.1167130
2.
2. A. Savchenko, Science 323, 589 (2009).
http://dx.doi.org/10.1126/science.1169246
3.
3. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.153401
4.
4. H. Şahin, C. Ataca, and S. Ciraci, Appl. Phys. Lett. 95, 222510 (2009).
http://dx.doi.org/10.1063/1.3268792
5.
5. J. Berashevich and T. Chakraborty, Nanotechnology 21, 355201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/35/355201
6.
6. J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).
http://dx.doi.org/10.1021/nl9020733
7.
7. J. Berashevich and T. Chakraborty, Phys. Rev. B 82, 134415 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134415
8.
8. A. K. Singh, E. S. Penev, and B. I. Yakobson, ACS Nano 4, 3510 (2010).
http://dx.doi.org/10.1021/nn1006072
9.
9. Y. Wang, X. Xu, J. Lu, M. Lin, Q. Bao, B. Özyilmaz, and K. P. Loh, ACS Nano 4, 6146 (2010).
http://dx.doi.org/10.1021/nn1017389
10.
10. D. Haberer, D. V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci, M. S. Dresselhaus, M. Knupfer, B. Büchner, and A. Grüneis, Nano Lett. 10, 3360 (2010).
http://dx.doi.org/10.1021/nl101066m
11.
11. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E , Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, Nat. Matter. 9, 315 (2010).
http://dx.doi.org/10.1038/nmat2710
12.
12. P. V. C. Medeiros, A. J. S. Mascarenhas, F. de Brito Mota, and C. M. C. de Castilho, Nanotechnology 21, 485701 (2010).
http://dx.doi.org/10.1088/0957-4484/21/48/485701
13.
13. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
14.
14. J. O. Sofo, A. M. Suarez, G. Usaj, P. S. Cornaglia, A. D. Hernández-Nieves, and C. A. Balseiro, Phys. Rev. B 83, 081411 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081411
15.
15. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
16.
16. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
17.
17. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
18.
18. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
19.
19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
20.
20. Chih-Kai Yang, Carbon 48, 3901 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.06.056
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3696883
Loading
/content/aip/journal/adva/2/1/10.1063/1.3696883
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3696883
2012-03-13
2016-12-05

Abstract

We investigate the electronic structure of graphane with hydrogen vacancies, which are supposed to occur in the process of hydrogenation of graphene. A variety of configurations is considered and defect states are derived by density functional calculation. We find that a continuous chain-like distribution of hydrogen vacancies will result in conduction of linear dispersion, much like the transport on a superhighway cutting through the jungle of hydrogen. The same conduction also occurs for chain-like vacancies in an otherwise fully fluorine-adsorbed graphene. These results should be very useful in the design of graphene-based electronic circuits.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3696883.html;jsessionid=y6oLCmX_pEJId6uAMsk6HDoQ.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3696883&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3696883&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3696883'
Right1,Right2,Right3,