Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell 100, 57 (2000).
2. K. Garber, “Energy boost: the Warburg effect returns in a new theory of cancer,” J Natl Cancer Inst 96, 1805 (2004).
3. M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Science 324, 1029 (2009).
4. R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández and E. Saavedra, “Energy metabolism in tumor cells,” FEBS J 274, 1393 (2007).
5. L. A. Demetrius, J. F. Coy and J. A. Tuszynski, “Cancer proliferation and therapy: the Warburg effect and quantum metabolism,” Theor Biol Med Model 7, 2 (2010).
6. T. N. Seyfried and L. M. Shelton, “Cancer as a metabolic disease,” Nutr Metab (Lond) 7, 7 (2010).
7. P. Armitage and R. Doll, “The age distribution of cancer and a multi-stage theory of carcinogenesis,” Int J Epidemiol 33, 1174 (2004).
8. R. A. DePinhom, “The age of cancer,” Nature 408, 248 (2000).
9. A. Rangarajan and R. A. Weinberg, “Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice,” Nat Rev Cancer 3, 952 (2003).
10. O. Warburg, E. Posener and E. Negelein, “About the metabolism of the carcinoma cell [Uber den Stoffwechsel der Carcinomzelle],” Biochem Z 152, 309 (1924).
11. O. Warburg, “On the origin of cancer cells,” Science 123, 309 (1956).
12. H. Pelicano et al., “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J Cell Biol 175, 913 (2006).
13. L. Nunney, “Lineage selection and the evolution of multistage carcinogenesis,” Proc Biol Sci 266, 493 (1999).
14. X. L. Zu and M. Guppy, “Cancer metabolism: facts, fantasy, and fiction,” Biochem Biophys Res Commun 313, 459 (2004).
15. L. Demetrius, “Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans,” EMBO Rep 6 Spec No, S39 (2005).
16. M. Ziehe and L. Demetrius, “Directionality theory: an empirical study of an entropic principle in life-history evolution,” Proc Biol Sci 272, 1185 (2005).
17. E. Wang, A. Wong and G. Cortopassi, “The rate of mitochondrial mutagenesis is faster in mice than humans,” Mutat Res 377, 157 (1997).
18. L. Demetrius, “Quantum statistics and allometric scaling of organisms,” Physica A: Statistical Mechanics and its Applications 322, 477 (2003).
19. L. Demetrius and J. A. Tuszynski, “Quantum metabolism explains the allometric scaling of metabolic rates,” J R Soc Interface 7, 507 (2010).
20. L. Demetrius, Directionality principles in thermodynamics and evolution, Proc Natl Acad Sci U S A 94, 3491 (1997).
21. N. W. Ashcroft and N. D. Mermin, “Solid state physics” Saunders College Publ., Fort Worth Internat. ed., 21. print (1995).
22. M. Kleiber, “The fire of life: An introduction to animal energetics” Wiley, New York (1961).
23. P. Mitchell, “Chemiosmotic coupling in oxidative and photosynthetic phosphorylation,” Biol Rev Camb Philos Soc 41, 445 (1966).
24. L. Demetrius, “Statistical mechanics and population biology,” J Stat Phys 30, 709 (1983).
25. L. Arnold, “Evolutionary Formalism for Products of Positive Random Matrices,” Ann Appl Probab 4, 859 (1994).
26. R. Roskoski, “BiochemistrySaunders, Philadelphia, 1st Ed (1996).
27. M. M. Bianchi, “Collective behavior in gene regulation: metabolic clocks and cross-talking,” FEBS J 275, 2356 (2008).
28. R. R. Klevecz, C. M. Li, I. Marcus I and P. H. Frankel, “Collective behavior in gene regulation: the cell is an oscillator, the cell cycle a developmental process,” FEBS J 275, 2372 (2008).
29. M. A. Aon, S. Cortassa and B. O’Rourke, “The fundamental organization of cardiac mitochondria as a network of coupled oscillators,” Biophys J 91, 4317 (2006).
30. T. Y. Tsong and R. D. Astumian, “Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields,” Annu Rev Physiol 50, 273 (1988)
31. T. Y. Tsong, “Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions,” Annu Rev Biophys Biophys Chem 19, 83 (1990).
32. D. S. Liu, R. D. Astumian and T. Y. Tsong, “Activation of Na+ and K+ pumping modes of (Na,K)-ATPase by an oscillating electric field,” J Biol Chem 265, 7260 (1990).
33. B. A. Feniouk et al., “The proton-driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating,” Biophys J 86, 4094 (2004).
34. S. E. DiCarlo and H. L. Collins, “Submitting illuminations for review,” Advances in Physiology Education 25, 70 (2001).
35. D. G. Nicholls and S. J. Ferguson, “Bioenergetics” Academic Press, London; San Diego CA (1992).
36. L. Demetrius, V. M. Gundlach and G. Ochs, “Invasion exponents in biological networks388, 651 (2009).
37. L. Demetrius, “Demographic Parameters and Natural Selection,” Proceedings of the National Academy of Sciences USA 71, 4645 (1974).
38. L. Demetrius, S. Legendre and P. Harremöes, “Evolutionary entropy: a predictor of body size, metabolic rate and maximal life span,” Bull Math Biol 71, 800 (2009).
39. L. Hayflick, “Biological aging is no longer an unsolved problem,” Ann N Y Acad Sci 1100, 1 (2007).
40. S. S. Perumal, P. Shanthi and P. Sachdanandam, “Energy-modulating vitamins-a new combinatorial therapy prevents cancer cachexia in rat mammary carcinoma,” Br J Nutr 93, 901 (2005).
41. J. L. Quiles, J. R. Huertas, M. Mañas, M. Battino and J. Mataix, “Physical exercise affects the lipid profile of mitochondrial membranes in rats fed with virgin olive oil or sunflower oil,” Br J Nutr 81, 21 (1999).
42. R. Cavaliere et al., “Selective heat sensitivity of cancer cells. Biochemical and clinical studies,” Cancer 20, 1351 (1967).<1351::AID-CNCR2820200902>3.0.CO;2-#
43. B. Kadenbach, “Intrinsic and extrinsic uncoupling of oxidative phosphorylation,” Biochim Biophys Acta 1604, 77 (2003).
44. T. E. McGraw and V. Mittal, “Stem cells: metabolism regulates differentiation,” Nature Chemical Biology 6, 176 (2010).

Data & Media loading...


Article metrics loading...



Empirical studies give increased support for the hypothesis that the sporadic form of cancer is an age-related metabolic disease characterized by: (a) metabolic dysregulation with random abnormalities in mitochondrial DNA, and (b) metabolic alteration – the compensatory upregulation of glycolysis to offset mitochondrial impairments. This paper appeals to the theory of Quantum Metabolism and the principles of natural selection to formulate a conceptual framework for a quantitative analysis of the origin and proliferation of the disease. Quantum Metabolism, an analytical theory of energy transduction in cells inspired by the methodology of the quantum theory of solids, elucidates the molecular basis for differences in metabolic rate between normal cells, utilizing predominantly oxidative phosphorylation, and cancercells utilizing predominantly glycolysis. The principles of natural selection account for the outcome of competition between the two classes of cells. Quantum Metabolism and the principles of natural selection give an ontogenic and evolutionary rationale for cancerproliferation and furnish a framework for effective therapeutic strategies to impede the spread of the disease.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd