1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3697852
1.
2.
2. Frangioni, J. V. , New technologies for human cancer imaging, J Clin Oncol 26, 40124021, doi:10.1200/JCO.2007.14.3065 (2008).
http://dx.doi.org/10.1200/JCO.2007.14.3065
3.
3. Hu, J. et al., A high spatial resolution 1H magnetic resonance spectroscopic imaging technique for breast cancer with a short echo time, Magn Reson Imaging 26, 360366, doi:10.1016/j.mri.2007.07.004 (2008).
http://dx.doi.org/10.1016/j.mri.2007.07.004
4.
4. Retsky, M. W. , Swartzendruber, D. E. , Wardwell, R. H. and Bame, P. D. , Is Gompertzian or exponential kinetics a valid description of individual human cancer growth?, Medical hypotheses 33, 95106 (1990).
http://dx.doi.org/10.1016/0306-9877(90)90186-I
5.
5. Fass, L. , Imaging and cancer: a review, Mol Oncol 2, 115152, doi:10.1016/j.molonc.2008.04.001 (2008).
http://dx.doi.org/10.1016/j.molonc.2008.04.001
6.
6. Raj, G. V. , Moreno, J. G. and Gomella, L. G. , Utilization of polymerase chain reaction technology in the detection of solid tumors, Cancer 82, 14191442 (1998).
http://dx.doi.org/10.1002/(SICI)1097-0142(19980415)82:8<1419::AID-CNCR1>3.0.CO;2-4
7.
7. Ghossein, R. A. , Bhattacharya, S. , and Rosai, J. , Molecular detection of micrometastases and circulating tumor cells in solid tumors, Clin Cancer Res 5, 19501960 (1999).
8.
8. Brindle, K. , New approaches for imaging tumour responses to treatment, Nat Rev Cancer 8, 94107, doi:10.1038/nrc2289 (2008).
http://dx.doi.org/10.1038/nrc2289
9.
9. Minghua, X. a. L. V. W. , Photoacoustic imaging in Biomedicine, Review of Scientific Instruments 77, 041101041122 (2006).
http://dx.doi.org/10.1063/1.2195024
10.
10. Yang, X. , Maurudis, A. , Gamelin, J. , Aguirre, A. , Zhu, Q. and Wang, L. V. , Photoacoustic tomography of small animal brain with a curved array transducer, J Biomed Opt 14, 054007, doi:10.1117/1.3227035 (2009).
http://dx.doi.org/10.1117/1.3227035
11.
11. Karin Zell, Jonathan I. Sperl, Stephan Ketzer, Mika W. Vogel, Peter Menzenbach, Reinhard Niessner, and Christoph Haisch, Optoacoustics plus ultrasound may improve breast cancer detection. SPIE 10.1117/2.1200710.0875 (2007).
http://dx.doi.org/10.1117/2.1200710.0875
12.
12. Srirang Manohar, Susanne E. Vaartjes, Johan C. G. van Hespen, Joost M. Klaase, Frank M. van den Engh, Wiendelt Steenbergen, and Ton G. van Leeuwen, Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics, OPTICS EXPRESS 15, 12277 (2007).
http://dx.doi.org/10.1364/OE.15.012277
13.
13. Xiao Xu, Liu, H. , and Wang, L. V. , Time-reversed ultrasonically encoded optical focusing into scattering media, Nat Photonics 5, 154157 (2011).
http://dx.doi.org/10.1038/nphoton.2010.306
14.
14. Gutierrez-Juarez, G. , Gupta, S. K. , Al-Shaer, M. , Polo-Parada, L. , Dale, P. S. , Papageorgio, C. and Viator, J. A. , Detection of melanoma cells in vitro using an optical detector of photoacoustic waves, Lasers Surg Med 42, 274281, doi:10.1002/lsm.20894 (2010).
http://dx.doi.org/10.1002/lsm.20894
15.
15. Gutierrez-Juarez, G. , Gupta, S. K. , Weight, R. M. , Polo-Parada, L. , Papagiorgio, C. , Bunch, J. D. and Viator, J. A. , Optical Photoacoustic Detection of Circulating Melanoma Cells In Vitro, Int J Thermophys 31, 784792, doi:10.1007/s10765-010-0770-4 (2010).
http://dx.doi.org/10.1007/s10765-010-0770-4
16.
16. Galanzha, E. I. , Shashkov, E. V. , Kelly, T. , Kim, J. W. , Yang, L. and Zharov, V. P. , In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells, Nat Nanotechnol 4, 855860, doi:nnano.2009.333 [pii] 10.1038/nnano.2009.333 (2009).
http://dx.doi.org/10.1038/nnano.2009.333
17.
17. Hoelen, C. and de Mul, F. , A new theoretical approach to photoacoustic signal generation, J. Acoust. Soc. Am 106, 695706 (1999).
http://dx.doi.org/10.1121/1.427087
18.
18. Paltauf, G. and Schmidt-Kloiber, H. , Photoacoustic cavitation in spherical and cylindrical absorbers, Applied Physics A Materials Science and Processing 68, 525531 (1999).
http://dx.doi.org/10.1007/s003390050935
19.
19. Diebold, G. J. , Sun, T. and Khan, M. I. , Photoacoustic monopole radiation in one, two, and three dimensions PRL, Vol. 67., Phys. Rev. Lett. 67, 33843387 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.3384
20.
20. Telenkov, S. and Mandelis, A. , Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains, Rev Sci Instrum 81, 124901, doi:10.1063/1.3505113 (2010).
http://dx.doi.org/10.1063/1.3505113
21.
21. Baesso, M. L. , Shen, J. and Snook, R. D. , Laser-induced photoacoustic signal phase study of stratum corneum and epidermis, Analyst 119, 561562 (1994).
http://dx.doi.org/10.1039/an9941900561
22.
22. Galanzha, E. I. , Shashkov, E. V. , Spring, P. M. , Suen, J. Y. and Zharov, V. P. , In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser, Cancer Res 69, 79267934, doi:0008-5472.CAN-08-4900 [pii] 10.1158/0008-5472.CAN-08-4900 (2009).
http://dx.doi.org/10.1158/0008-5472.CAN-08-4900
23.
23. Perez-Solano, R. , Polo-Parada, L. and Gutierrez-Juarez, G. , Modelo esféricamente simétrico de la señal fotoacústica en el dominio temporal producida por objetos micrométricos: el caso de las celúlas de melanoma in vitro. “A spherical symmetric model for the study of the Photo acoustic signal in the temporal domain produced by micrometric objects; the case of melanoma cell in vitro,” Superficies y Vacio, Mexico Materiales (2011- In Press).
24.
24. Saha, R. K. and Kolios, M. C. , A simulation study on photoacoustic signals from red blood cells, The Journal of the Acoustical Society of America 129, 29352943, doi:10.1121/1.3570946 (2011).
http://dx.doi.org/10.1121/1.3570946
25.
25. Galanzha, E. I. , Kokoska, M. S. , Shashkov, E. V. , Kim, J. W. , Tuchin, V. V. and Zharov, V. P. , In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles, J Biophotonics 2, 528539, doi:10.1002/jbio.200910046 (2009).
http://dx.doi.org/10.1002/jbio.200910046
26.
26. Scherer, D. and Kumar, R. , Genetics of pigmentation in skin cancer–a review, Mutat Res 705, 141153, doi:10.1016/j.mrrev.2010.06.002 (2010).
http://dx.doi.org/10.1016/j.mrrev.2010.06.002
27.
27. Galanzha, E. I. , Shashkov, E. V. , Tuchin, V. V. and Zharov, V. P. , In vivo multispectral, multiparameter, photoacoustic lymph flow cytometry with natural cell focusing, label-free detection and multicolor nanoparticle probes, Cytometry A 73, 884894, doi:10.1002/cyto.a.20587 (2008).
http://dx.doi.org/10.1002/cyto.a.20587
28.
28. Galanzha, E. I. , Tuchin, V. V. and Zharov, V. P. , In vivo integrated flow image cytometry and lymph/blood vessels dynamic microscopy, J Biomed Opt 10, 054018, doi:10.1117/1.2060567 (2005).
http://dx.doi.org/10.1117/1.2060567
29.
29. Jawaid, S. , Khan, T. H. , Osborn, H. M. and Williams, N. A. , Tyrosinase activated melanoma prodrugs, Anticancer Agents Med Chem 9, 717727 (2009).
30.
30. Kosmadaki, M. G. , Naif, A. and Hee-Young, P. , Recent progresses in understanding pigmentation, G Ital Dermatol Venereol 145, 4755 (2010).
31.
31. Gondek, G. , Li, T. , Lynch, R. J. , and Dewhurst, R. J. , Decay of photoacoustic signals from biological tissue irradiated by near infrared laser pulses, J Biomed Opt 11, 054036, doi:10.1117/1.2360690 (2006).
http://dx.doi.org/10.1117/1.2360690
32.
32. Jackson, J. D. , Classical Electrodynamics (John Wiley & Sons, Inc, 1998).
33.
33. Paltauf, G. and Schmidt-Kloiber, H. , Measurement of laser-induced acoustic waves with a calibrated optical transducer, J. Appl. Phys 1525, 15251531 (1997).
http://dx.doi.org/10.1063/1.365953
34.
34. Jacques, S. L. and McAuliffe, D. J. , The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation, Photochemistry and photobiology 53, 769775 (1991).
35.
35. Karpiouk, A. B. , Aglyamov, S. R. , Mallidi, S. , Shah, J. , Scott, W. G. , Rubin, J. M. and Emelianov, S. Y. , Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies, J Biomed Opt 13, 054061, doi:10.1117/1.2992175 (2008).
http://dx.doi.org/10.1117/1.2992175
36.
36. Saha, R. K. , Franceschini, E. and Cloutier, G. , Assessment of accuracy of the structure-factor-size-estimator method in determining red blood cell aggregate size from ultrasound spectral backscatter coefficient, The Journal of the Acoustical Society of America 129, 22692277, doi:10.1121/1.3561653 (2011).
http://dx.doi.org/10.1121/1.3561653
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3697852
Loading
/content/aip/journal/adva/2/1/10.1063/1.3697852
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3697852
2012-03-19
2014-08-28

Abstract

The distinctive spectralabsorption characteristics of cancercells make photoacoustic techniques useful for detectionin vitro and in vivo. Here we report on our evaluation of the photoacoustic signal produced by a series of monolayers of different cell lines in vitro. Only the melanoma cell line HS936 produced a detectablephotoacoustic signal in which amplitude was dependent on the number of cells. This finding appears to be related to the amount of melanin available in these cells. Other cell lines (i.e. HL60, SK-Mel-1, T47D, Hela, HT29 and PC12) exhibited values similar to a precursor of melanin (tyrosinase), but failed to produce sufficient melanin to generate a photoacoustic signal that could be distinguished from background noise. To better understand this phenomenon, we determined a formula for the time-domain photoacousticwave equation for a monolayer of cells in a non-viscous fluid on the thermoelastic regime. The theoretical results showed that the amplitude and profile of the photoacoustic signalgenerated by a cellmonolayer depended upon the number and distribution of the cells and the location of the point of detection. These findings help to provide a better understanding of the factors involved in the generation of a photoacoustic signal produced by different cellsin vitro and in vivo.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3697852.html;jsessionid=hbsf07dn87wl.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3697852&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3697852
10.1063/1.3697852
SEARCH_EXPAND_ITEM