Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo and M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron., 20, 15071511 (1984).
2. R. R. Alfano, B. B. Das, J. B. Cleary, R. Prudente and E. Celmer, “Light sheds light on cancer,” Bull. NY Acad. Med., 67, 143150 (1991).
3. R. R. Alfano, G. C. Tang, Asima Pradhan, W. Lam, Daniel S. J. Choy, Elana Opher, “Fluorescence Spectra from Cancerous and Normal Human Breast and Lung Tissues,” IEEE J. of Quant. Electron QE, 23, 1806 (1987).
4. G. M. Palmer, P. J. Keely, T. M. Breslin and N. Ramanujam, “Autofluorescence spectroscopy of normal and malignant human breast cell lines,” Photochem.& Photobiol., 78(5), 462469 (2003).<0462:ASONAM>2.0.CO;2
5. M. B. Silberberg, H. E. Savage, P. G. Sacks, S. P. Schantz, G. C. Tang and R. R. Alfano, “Detecting retinoic acid-induced biochemical alterations in squamous cell carcinoma using intrinsic fluorescence spectroscopy,” The Laryngoscope, 104(3), 278282 (1994).
6. Y. Pu, W. B. Wang, G. C. Tang and R. R. Alfano, “Changes of collagen and NADH in human cancerous and normal prostate tissues studied using fluorescence spectroscopy with selective excitation wavelength,” J. Biomed. Opt., 15, 0470081 (2010).
7. J. J. Baraga, R. P. Rava, P. Taroni, C. Kittrell, M. Fitzmaurice, M. S. Feld, “Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation,” Lasers Surg. Med., 10, 24561 (1990).
8. B. Lin, S. Urayama, R. Saroufeem, D. Matthews and S. G. Demos, “Real-Time Microscopic Imaging of Esophageal Epithelial Disease with Autofluorescence under Ultraviolet Excitation,” Opt. Express, 17(15), (2009).
9. I. J. Bigio and J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnosis,” Phys Med Biol, 42, 80314 (1997).
10. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: Modeling, measurements, and implications,” J. Biomed. Opt., 6(4), 385396 (2001).
11. M. Panjehpour, C. E. Julius, M. N. Phan, T. Vo-Dinh, S. Overholt, “Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers,” Lasers Surg. Med., 31, 367373 (2002).
12. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam and M. S. Feld, “NAD(P)H and collagen as in Vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res., 62, 682687 (2002).
13. R. R. Alfano and Y. Yang, “Stokes shift emission spectroscopy of human tissue and key biomolecules,” IEEE J. Quantum Electron., 9(2), 148153 (2003).
14. R. R. Alfano, Y. Yang, “Stokes Shift Emission Spectroscopy for Detection of Disease and Physiological State of Specimen,” U.S.A. patent #7,192,783, March 20, (2007).
15. J. Ebenezar, Y. Pu, C. H. Liu, W. B. Wang, and R. R. Alfano, “Diagnostic Potential of Stokes Shift Spectroscopy of Breast and Prostate Tissues - A preliminary pilot study,” Technol. Cancer Res. Treat. 10, 153161 (2011).
16. B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys., 60, 227292 (1997).
17. Y. Pu, W. B. Wang, B. B. Das, and R. R. Alfano, “Differences of Time-resolved near infrared spectral wing emission and imaging of human cancerous and normal prostate tissues,” Opt. Commun., 282, 43084314 (2009).
18. R. D. Spencer and G. Weber, “Influence of Brownian rotations and energy transfer upon the measurements of fluorescence lifetime,” J. Chem. Phys. 52, 16541663 (1970).
19. G. R. Fleming, J. M. Morris and G. W. Robinson, “Direct observation of rotational diffusion by pico-second spectroscopy,” Chemical Physics, 17, 91100 (1976).
20. W. S. Glassman, M. Steinberg and R. R. Alfano, “Time-resolved and steady state fluorescence spectroscopy from normal and malignant cultured human breast cell lines,” Lasers in Life Sci., 6, 9198 (1994).
21. D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano and R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J., 50, 463469 (1986).
22. A. Pradhan, B. B. Das, K. M. Yoo, J. Cleary, R. Prudente, E. Celmer, and R. R. Alfano, “Time-resolved UV photoexcited fluorescence kinetics from malignant and non-malignant breast tissues,” Lasers in Life Sci., 4(4), 225234 (1992).
23. Y. Pu, W. B. Wang, S. Achilefu and R. R. Alfano, “Study of rotational dynamics of receptor-targeted contrast agents in cancerous and normal prostate tissues using time-resolved picosecond emission spectroscopy,” Appl. Opt., 50, No. 7, 13121322 (2011).
24. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439442 (1996).
25. R. R. Alfano and S. L. Shapiro, Observation of Self-Phase Modulation and Small Scale Filaments in Crystals and Glasses, Phys. Rev. Lett. 24, 592594 (1970);
25.R. R. Alfano, The Supercontinuum Laser Source, Springer Verlag, New York (1989).
26. R. R. Alfano, and S. S. Yao, “Human teeth with and without dental caries studied by visible luminescent spectroscopy,” J Dent Res., 60(2), 120122 (1981).
27. R. R. Alfano, G. C. Tang, A. Pradhan, M. Bleich, D. S. J. Choy and E. Opher, “Steady State and Time-Resolved Laser Fluorescence from Normal and Tumor Lung and Breast Tissues,” J. of Tumor Marker Oncology, 3, 165 (1988).
28. R. R. Alfano, Picosecond gated light detector tube, US patent No. 4,682,020;
28.Ultrafast gated light detection, US patent No. 4,659,921, April 21, 1987.
29. R. R. Alfano and N Schiller, Compact Temporal Spectral Photometer, US patent No. 4,630,925, December 23, 1986.

Data & Media loading...


Article metrics loading...



We discuss the use of time resolved fluorescencespectroscopy to extract fundamental kinetic information on molecular species in tissues. The temporal profiles reveal the lifetime and amplitudes associated with key active molecules distinguishing the local spectral environment of tissues. The femtosecond laser pulses at 310 nm excite the tissue. The emission profile at 340 nm from tryptophan is non-exponential due to the micro-environment. The slow and fast amplitudes and lifetimes of emission profiles reveal that cancer and normal states can be distinguished. Time resolved optical methods offer a new cancerdiagnostic modality for the medical community.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd