1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Ionized zinc vacancy mediated ferromagnetism in copper doped ZnO thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3698314
1.
1. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. Part 2-Letters 39, L555 (2000).
http://dx.doi.org/10.1143/JJAP.39.L555
2.
2. Z. A. Khan and S. Ghosh, Appl. Phys. Lett. 99, 042504 (2011).
http://dx.doi.org/10.1063/1.3615714
3.
3. H. S. Hsu, J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, and C. P. Liu, Appl. Phys. Lett. 88, 242507 (2006).
http://dx.doi.org/10.1063/1.2212277
4.
4. L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.033203
5.
5. Y. M. Hu, S. S. Li, and C. H. Chia, Appl. Phys. Lett. 98, 052503 (2011).
http://dx.doi.org/10.1063/1.3549696
6.
6. H. Liu, X. Zhang, L. Li, Y. X. Wang, K. H. Gao, Z. Q. Li, R. K. Zheng, S. P. Ringer, B. Zhang, and X. X. Zhang, Appl. Phys. Lett. 91, 072511 (2007).
http://dx.doi.org/10.1063/1.2772176
7.
7. L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 72, 035203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035203
8.
8. D. B. Buchholz, R. P. H. Chang, J. H. Song, and J. B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).
http://dx.doi.org/10.1063/1.2032588
9.
9. S.-Y. Zhuo, X.-C. Liu, Z. Xiong, J.-H. Yang, and E.-W. Shi, J. Cryst. Growth 332, 39 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.07.028
10.
10. R. Elilarassi, P. S. Rao, and G. Chandrasekaran, J. Sol-Gel Technol. 57, 101 (2011).
http://dx.doi.org/10.1007/s10971-010-2329-z
11.
11. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).
http://dx.doi.org/10.1063/1.3054175
12.
12. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
http://dx.doi.org/10.1063/1.1394173
13.
13. Y. Fang, Y. Wang, Y. Wan, Z. Wang, and J. Sha, J. Phys. Chem. C 114, 12469 (2010).
http://dx.doi.org/10.1021/jp103711m
14.
14. A. J. Reddy, M. K. Kokila, H. Nagabhushana, R. P. S. Chakradhar, C. Shivakumara, J. L. Rao, and B. M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011).
http://dx.doi.org/10.1016/j.jallcom.2011.02.043
15.
15. S. Moribe, T. Ikoma, K. Akiyama, Q. Zhang, F. Saito, and S. Tero-Kubota, Chem. Phys. Lett. 436, 373 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.01.067
16.
16. M. Kakazey, M. Vlasova, M. Dominguez-Patino, G. Dominguez-Patino, T. Sreckovic, and N. Nikolic, Sci. Sinter. 36, 65 (2004).
http://dx.doi.org/10.2298/SOS0402065K
17.
17. H. J. Lee, B. S. Kim, C. R. Cho, and S. Y. Jeong, Phys. Status Solidi B 241, 1533 (2004).
http://dx.doi.org/10.1002/pssb.200304614
18.
18. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
19.
19. T. S. Herng, D. C. Qi, T. Berlijn, J. B. Yi, K. S. Yang, Y. Dai, Y. P. Feng, I. Santoso, C. Sanchez-Hanke, X. Y. Gao, A. T. S. Wee, W. Ku, J. Ding, and A. Rusydi, Phys. Rev. Lett. 105, 207201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.207201
20.
20. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
21.
21. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65, 235205 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.235205
22.
22. T. Kataoka, Y. Yamazaki, V. R. Singh, A. Fujimori, F. H. Chang, H. J. Lin, D. J. Huang, C. T. Chen, G. Z. Xing, J. W. Seo, C. Panagopoulos, and T. Wu, Phys. Rev. B 84, 153203 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.153203
23.
23. G. Shukla, Appl. Phys. A 97, 115 (2009).
http://dx.doi.org/10.1007/s00339-009-5311-2
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3698314
Loading
/content/aip/journal/adva/2/1/10.1063/1.3698314
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3698314
2012-03-23
2014-09-02

Abstract

This paper reports the origin of ferromagnetism in Cu-doped ZnOthin films. Room-temperature ferromagnetism is obtained in all the thin films when deposited at different oxygen partial pressure. An obviously enhanced peak corresponding to zincvacancy is observed in the photoluminescence spectra, while the electrical spin resonance measurement implies the zincvacancy is negative charged. After excluding the possibility of direct exchange mechanisms (via free carriers), we tentatively propose a quasi-indirect exchange model (via ionized zincvacancy) for Cu-doped ZnO system.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3698314.html;jsessionid=1tft23vpkr0jv.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3698314&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ionized zinc vacancy mediated ferromagnetism in copper doped ZnO thin films
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3698314
10.1063/1.3698314
SEARCH_EXPAND_ITEM