Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Sato and H. Katayama-Yoshida, Jpn. J. Appl. Phys. Part 2-Letters 39, L555 (2000).
2. Z. A. Khan and S. Ghosh, Appl. Phys. Lett. 99, 042504 (2011).
3. H. S. Hsu, J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, and C. P. Liu, Appl. Phys. Lett. 88, 242507 (2006).
4. L. H. Ye, A. J. Freeman, and B. Delley, Phys. Rev. B 73, 033203 (2006).
5. Y. M. Hu, S. S. Li, and C. H. Chia, Appl. Phys. Lett. 98, 052503 (2011).
6. H. Liu, X. Zhang, L. Li, Y. X. Wang, K. H. Gao, Z. Q. Li, R. K. Zheng, S. P. Ringer, B. Zhang, and X. X. Zhang, Appl. Phys. Lett. 91, 072511 (2007).
7. L. S. Vlasenko and G. D. Watkins, Phys. Rev. B 72, 035203 (2005).
8. D. B. Buchholz, R. P. H. Chang, J. H. Song, and J. B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).
9. S.-Y. Zhuo, X.-C. Liu, Z. Xiong, J.-H. Yang, and E.-W. Shi, J. Cryst. Growth 332, 39 (2011).
10. R. Elilarassi, P. S. Rao, and G. Chandrasekaran, J. Sol-Gel Technol. 57, 101 (2011).
11. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, J. Appl. Phys. 105, 013502 (2009).
12. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
13. Y. Fang, Y. Wang, Y. Wan, Z. Wang, and J. Sha, J. Phys. Chem. C 114, 12469 (2010).
14. A. J. Reddy, M. K. Kokila, H. Nagabhushana, R. P. S. Chakradhar, C. Shivakumara, J. L. Rao, and B. M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011).
15. S. Moribe, T. Ikoma, K. Akiyama, Q. Zhang, F. Saito, and S. Tero-Kubota, Chem. Phys. Lett. 436, 373 (2007).
16. M. Kakazey, M. Vlasova, M. Dominguez-Patino, G. Dominguez-Patino, T. Sreckovic, and N. Nikolic, Sci. Sinter. 36, 65 (2004).
17. H. J. Lee, B. S. Kim, C. R. Cho, and S. Y. Jeong, Phys. Status Solidi B 241, 1533 (2004).
18. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
19. T. S. Herng, D. C. Qi, T. Berlijn, J. B. Yi, K. S. Yang, Y. Dai, Y. P. Feng, I. Santoso, C. Sanchez-Hanke, X. Y. Gao, A. T. S. Wee, W. Ku, J. Ding, and A. Rusydi, Phys. Rev. Lett. 105, 207201 (2010).
20. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).
21. A. C. Durst, R. N. Bhatt, and P. A. Wolff, Phys. Rev. B 65, 235205 (2002).
22. T. Kataoka, Y. Yamazaki, V. R. Singh, A. Fujimori, F. H. Chang, H. J. Lin, D. J. Huang, C. T. Chen, G. Z. Xing, J. W. Seo, C. Panagopoulos, and T. Wu, Phys. Rev. B 84, 153203 (2011).
23. G. Shukla, Appl. Phys. A 97, 115 (2009).

Data & Media loading...


Article metrics loading...



This paper reports the origin of ferromagnetism in Cu-doped ZnOthin films. Room-temperature ferromagnetism is obtained in all the thin films when deposited at different oxygen partial pressure. An obviously enhanced peak corresponding to zincvacancy is observed in the photoluminescence spectra, while the electrical spin resonance measurement implies the zincvacancy is negative charged. After excluding the possibility of direct exchange mechanisms (via free carriers), we tentatively propose a quasi-indirect exchange model (via ionized zincvacancy) for Cu-doped ZnO system.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd