Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3698320
1.
1. T. Diehl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
2.
2. G. T. Thaker, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Knhim, J. Kim, and F. Ren, Appl. Phys. Lett. 80, 3964 (2002)..
http://dx.doi.org/10.1063/1.1481533
3.
3. S. Dhar, O. Brandt, A. Trampert, L. Däweritz, K. J. Friedland, K. H. Ploog, J. Keller, B. Beschoten, and G. Güntherodt, Appl. Phys. Lett. 82, 2077 (2003).
http://dx.doi.org/10.1063/1.1564292
4.
4. P. Dev, Y. Xue, and P. H. Zhang, Phys. Rev. Lett. 100, 117204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.117204
5.
5. H. Pan, J. B. Yi, L. Shen, R. Q. Wu. J. H. Yang, J. L. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.127201
6.
6. I. S. Elfimov, S. Yunoki, and G. A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.216403
7.
7. S. X. Zhang, S. B. Ogale, W. Q. Yu, X. Y. Cao, T. Liu, S. Ghosh, G. P. Das, A. T. S. Wee, R. L. Greene, and T. Venkatesan, Adv. Mater. 21, 2282 (2009).
http://dx.doi.org/10.1002/adma.200803019
8.
8. H. Ohldag, T. Tyliszczak, R. Höhne, D. Spemann, P. Esquinazi, M. Ungureanu, and T. Butz, Phys. Rev. Lett. 98, 187204 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.187204
9.
9. H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2006).
http://dx.doi.org/10.1063/1.1562340
10.
10. I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.036804
11.
11. T. Nagata, G. Koblmuller, O. Biewagen, C. S. Gallinat, and J. S. Speck, Appl. Phys. Lett. 95, 132104 (2009).
http://dx.doi.org/10.1063/1.3238286
12.
12. Y. Sata and S. Sato, J. Crystal Growth 144, 15 (1994).
http://dx.doi.org/10.1016/0022-0248(94)90004-3
13.
13. K. Mitamura, T. Honke, J. Ohta, A. Kobayashim, H. Fujioka, and M. Oshima, J. Crystal Growth 311, 1316 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.12.015
14.
14. B. Song, K. X. Zhu, J. Liu, J. K. Jian, J. C. Han, H. Q. Bao, H. Li, Y. Liu, H. B. Zuo, W. Y. Wang, G. Wang, X. H. Zhang, S. H. Meng, W. J. Wang, and X. L. Chen, J. Mater. Chem. 20, 9935 (2010).
http://dx.doi.org/10.1039/c0jm02083d
15.
15. J. M. D. Coey, M. Venkatesan, and C. B. Fitsgerald, Nature Mater. 4, 173 (2005).
http://dx.doi.org/10.1038/nmat1310
16.
16. A. J. Millis, Nature (London) 392, 147 (1998).
http://dx.doi.org/10.1038/32348
17.
17. X. S. Wu, T. P. A. Hase, B. K. Tanner, and H. H. Cheng, Surf. Sci. 548, 239 (2004).
http://dx.doi.org/10.1016/j.susc.2003.11.015
18.
18. C. L. Wu, H. M. Lee, C. T. Kuo, C. H. Chen, and S. Gwo, Phys. Rev. Lett. 101, 106803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.106803
19.
19. L. F. J. Piper, T. D. Veal, P. H. Jefferson, C. F. McConville, F. Fuchs, J. Furthmuller, F. Bechstedt, H. Lu, and W. J. Schaff, Phys. Rev. B 72, 245319 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.245319
20.
20. Y. Liu, G. Wang, S. C. Wang, J. H. Yang, L. Chen, X. B. Qin, B. Song, B. Y. Wang, and X. L. Chen, Phys. Rev. Lett. 106, 087205 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.087205
21.
21. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
22.
22. A. Zubrilov, Eds: L. M. Eevinshtein, S. L. Rumyantsev, and M. S. Shur, John Wiley & Sons, Inc., New York, 2001, 4966.
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3698320
Loading
/content/aip/journal/adva/2/1/10.1063/1.3698320
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3698320
2012-03-23
2016-10-01

Abstract

Diluted magnetic semiconductors(DMSs), with the Curie temperature at room temperature, are of technological and fundamental importance. Defect engineering has been an effective way to introduce magnetic moments in various non-magnetic systems. Here we show firstly, InN film directly grown on (0001)-oriented Al2O3 substrate with In deficiency is ferromagnetic with its Curie temperature as high as 297K. The undesirable large lattice mismatch between the film and substrate leads to a peculiar surface structure that the film separates into distinct In-rich and In-poor regions. Our first-principles calculations suggest the defect of In-vacancy is responsible for the magnetism. A local magnetic moment of 2.5μB is found, in agreement with experimental results. Our findings demonstrate that room-temperature ferromagnetism can also be induced in narrow band gap semiconductors through defect engineering, which remains largely unexplored so far.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3698320.html;jsessionid=Zx1IRL4Cbex2mmANn8BHNGbO.x-aip-live-02?itemId=/content/aip/journal/adva/2/1/10.1063/1.3698320&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3698320&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3698320'
Right1,Right2,Right3,