1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Brownian rod scheme in microenvironment sensing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3699034
1.
1. P. Bonfanti, S. Claudinot, A. W. Amici, A. Farley, C. C. Blackburn, and Y. Barrandon, Nature 466, 978982 (2010).
http://dx.doi.org/10.1038/nature09269
2.
2. J. L. West, Nat. Mat. 10, 727729 (2011).
http://dx.doi.org/10.1038/nmat3132
3.
3. M. D. Mager, V. LaPointe, and M. M. Stevens, Nat. Chem. 3, 582589 (2011).
http://dx.doi.org/10.1038/nchem.1090
4.
4. A. W. Lawson and E. A. Long, Phys. Rev. 70, 977978 (1946).
http://dx.doi.org/10.1103/PhysRev.70.977
5.
5. J. C. Wheatley and R. A. Webb, Science 182, 220307 (1973).
http://dx.doi.org/10.1126/science.182.4109.241
6.
6. J. Kurchan, Nature 433, 222225 (2005).
http://dx.doi.org/10.1038/nature03278
7.
7. K. van Ommering, C. C. H. Lamers, J. H. Nieuwenhuis, L. J. van IJzendoorn, and M. W. J. Prins, J. Appl. Phys. 105, 104905 (2009).
http://dx.doi.org/10.1063/1.3118500
8.
8. R. Duggal and M. Pasquali, Phys. Rev. Lett. 96, 246104 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.246104
9.
9. R. R. Agayan, R. G. Smith, and R. Kopelman, J. Appl. Phys. 104, 054915 (2008).
http://dx.doi.org/10.1063/1.2976355
10.
10. A. Neild, T. W. Ng, and W. M. S. Yii, Opt. Express. 17, 5321 (2009).
http://dx.doi.org/10.1364/OE.17.005321
11.
11. G. Volpe, G. Volpe, and D. Petrov, Phys. Rev. E 76, 061118 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.061118
12.
12. F. Perrin, J. Phys. Radium 5, 497511 (1934).
http://dx.doi.org/10.1051/jphysrad:01934005010049700
13.
13. F. Perrin, J. Phys. Radium 7, 111 (1936).
http://dx.doi.org/10.1051/jphysrad:01936007010100
14.
14. Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, Science 314, 626630 (2006).
http://dx.doi.org/10.1126/science.1130146
15.
15. B. Bhaduri, A. Neild, and T. W. Ng, Appl. Phys. Lett. 92, 084105 (2008).
http://dx.doi.org/10.1063/1.2887883
16.
16. Y. Han, A. Alsayed, M. Nobili, and A. G. Yodh, Phys. Rev. E 80, 011403 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.011403
17.
17. A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, Phys. Rev. E. 82, 041126 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.041126
18.
18. B. Geislinger and R. Kawai, Phys. Rev. E. 74, 011912 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.011912
19.
19. C. Ribrault, A. Triller, and K. Sekimoto, Phys. Rev. E 75, 021112 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.021112
20.
20. H. Brenner, Int. J. Multiphase Flow 1, 195 (1974).
http://dx.doi.org/10.1016/0301-9322(74)90018-4
21.
21. E. Wandersman, R. Candelier, G. Debrégeas, and A. Prevost, Phys. Rev. Lett. 107, 164301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.164301
22.
22. I. Gralinski, A. Neild, T. W. Ng, and M. Muradoglu, J. Chem. Phys. 134, 064514 (2011).
http://dx.doi.org/10.1063/1.3537738
23.
23. P. V. C. Hough, US Patent 3069654 (1962).
24.
24. R. O. Duda and P. E. Hart, Commun. ACM 15, 11 (1972).
http://dx.doi.org/10.1145/361237.361242
25.
25. T. M. Van Veen and F. C. A. Groen, Pattern Recognition 14, 137 (1981).
http://dx.doi.org/10.1016/0031-3203(81)90055-8
26.
26. X. Shi, A. von dem Bussche, R. H. Hurt, A. B. Kane, and H. Gao, Nat. Nanotechnol. 6, 714 (2011).
http://dx.doi.org/10.1038/nnano.2011.151
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699034
Loading
/content/aip/journal/adva/2/1/10.1063/1.3699034
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3699034
2012-03-22
2014-10-25

Abstract

Fluctuations of freely translating spherical particles via Brownian motion should provide inexhaustible information about the micro-environment, but is beset by the problem of particles drifting away from the venue of measurement as well as colliding with other particles. We propose a scheme here to circumvent this in which a Brownian rod that lies in proximity to a cylindrical pillar is drawn in by a tuneable attractive force from the pillar. The force is assumed to act through the centre of each body and the motion exclusive to the x-y plane. Simulation studies show two distinct states, one in which the rod is moving freely (state I) and the other in which the rod contacts the cylinder surface (state II). Information about the micro-environment could be obtained by tracking the rotational diffusion coefficient D θ populating in either of these two states. However, the magnitude of the normalized charge product in excess of 6.3x104 was found necessary for a rod of 6.81 × 0.93 μm2 (length × diameter) and 10μm diameter cylindrical pillar to minimize deviation errors. It was also found that the extent of spatial sensing coverage could be controlled by varying the charge level. The conditions needed to ascertain the rotational sampling for angle determination through the Hough transform were also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3699034.html;jsessionid=3co16bqsemfq5.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3699034&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Brownian rod scheme in microenvironment sensing
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699034
10.1063/1.3699034
SEARCH_EXPAND_ITEM