1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Host-guest interaction in cancer and a reason for the poor efficiency of the immune system in its detection and termination
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3699046
1.
1. In the case considered here the energy is chemical in nature, although there are systems like the majority of the Vegetable Kingdom where such an energy is ultimately electromagnetic in character.
2.
2. B. D. Aguda, Lect. Notes Math. 1872, 1 (2006).
http://dx.doi.org/10.1007/11561606
3.
3. G. Tiana, S. Krishna, S. Pigolotti, M. H. Jensen, and S. Kneppen, Phys. Biol. 4, R1 (2007).
http://dx.doi.org/10.1088/1478-3975/4/2/R01
4.
4. G. F. Cerofolini, Adv. Sci. Lett. 4, 522 (2011).
http://dx.doi.org/10.1166/asl.2011.1218
5.
5. G. F. Cerofolini, Thin Solid Films 79, 277 (1981).
http://dx.doi.org/10.1016/0040-6090(81)90316-3
6.
6. G. F. Cerofolini, Adv. Colloid Interface Sci. 19, 103 (1983).
http://dx.doi.org/10.1016/0001-8686(83)80005-0
7.
7. L. Hayflick and P. S. Moorhead, Exp. Cell Res. 25, 585 (1961).
http://dx.doi.org/10.1016/0014-4827(61)90192-6
8.
8. L. Hayflick, Exp. Cell Res. 37, 614 (1965).
http://dx.doi.org/10.1016/0014-4827(65)90211-9
9.
9. W. Harvey, “On The Motion Of The Heart And Blood In Animals,” in Scientific papers; physiology, medicine, surgery, geology, with introductions, notes and illustrations, The Harvard classics, vol. 38. (P. F. Collier & Son, New York, 1910).
10.
10. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freedman and Co., New York, 1983).
11.
11. W. F. Osgood, Trans. Am. Math. Soc. 4, 107 (1903).
http://dx.doi.org/10.1090/S0002-9947-1903-1500628-5
12.
12. E. Gabrys, M. Rybaczuk, and A. Kedzia, Chaos, Solitons & Fractals 24, 707 (2005).
http://dx.doi.org/10.1016/j.chaos.2004.09.087
13.
13. G. Pocock and C. D. Richards, Human Physiology: The Basis of Medicine, 3rd edn. (Oxford Univ. Press, Oxford, 2006).
14.
14. C. D. Murray, J. Gen. Physiol. 41, 835 (1926).
http://dx.doi.org/10.1085/jgp.9.6.835
15.
15. G. F. Cerofolini and P. Amato, in: D. Mavroidis and A. Ferreira (eds.), NanoRobotics: Current Approaches and Techniques (Springer, New York, 2012).
16.
16. G. F. Cerofolini, P. Amato, M. Masserini, and G. Mauri, Adv. Sci. Lett. 3, 345 (2010).
http://dx.doi.org/10.1166/asl.2010.1138
17.
17. P. Amato, M. Masserini, G. Mauri, and G. F. Cerofolini, in: M. Dorigo (ed.) Swarm intelligence: 7th International Conference, ANTS 2010, Brussels, Belgium, September 8–10, 2010. Proceedings, vol. 6234 (Springer, Berlin, 2011) p. 408.
18.
18. G. B. West, J. H. Brown, and B. J. Enquist, Science 276, 122 (1997).
http://dx.doi.org/10.1126/science.276.5309.122
19.
19. J. M. Brown, Mol. Med. Today 6, 157 (2000).
http://dx.doi.org/10.1016/S1357-4310(00)01677-4
20.
20. V. M. Savage, J. F. Gillooly, W. H. Woodruff, G. B. West, A. P. Allen, B. J. Enquist, and J. H. Brown, Funct. Ecol. 18, 257 (2004).
http://dx.doi.org/10.1111/j.0269-8463.2004.00856.x
21.
21. J. W. Mink, R. J. Blumenschine, and D. B. Adams, Am. J. Physiol 241, R203 (1981).
22.
22. J. E. Visvader, Nature 469, 314 (2011).
http://dx.doi.org/10.1038/nature09781
23.
23. L. A. Liotta and E. C. Kohn, Nature 411, 375 (2001)
http://dx.doi.org/10.1038/35077241
24.
24. F. Montel, M. Delarue, J. Elgeti, L. Malaquin, M. Basan, T. Risler, B. Cabane, D. Vignjevic, J. Prost, G. Cappello, and J. F. Joanny, Phys. Rev. Lett. 107, 188102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.188102
25.
25. G. F. Cerofolini, E. Romano, and D. Narducci, J. Nanoeng. Nanomanuf. 1, 50 (2011).
26.
26. A. Kamiya and T. Togawa, Bull. Math. Biol. 34, 431 (1972).
http://dx.doi.org/10.1007/BF02476705
27.
27. A. Kamiya, S. Takeda, and M. Shibata, Bull. Math. Biol. 49, 351 (1987).
http://dx.doi.org/10.1016/S0092-8240(87)80029-0
28.
28. L. Brannon–Peppas and J. O. Blanchette, Adv. Drug Delivery Rev. 56, 1649 (2004).
http://dx.doi.org/10.1016/j.addr.2004.02.014
29.
29. A. L. Bauer, T. L. Jackson, and Y. Jiangy, Biophys. J. 92, 3105 (2007).
http://dx.doi.org/10.1529/biophysj.106.101501
30.
30. J. Folkman, N. Engl. J. Med. 285, 11821186 (1971).
http://dx.doi.org/10.1056/NEJM197108122850711
31.
31. M. Welter and H. Rieger, Eur. Phys. J. E 33, 149 (2010).
http://dx.doi.org/10.1140/epje/i2010-10611-6
32.
32. K. Bartha and H. Rieger, J. Theor. Biol. 241, 903 (2006).
http://dx.doi.org/10.1016/j.jtbi.2006.01.022
33.
33. D. A. Kennedy, T. Lee, and D. Seely, Integr. Cancer Ther 8, 9 (2009).
http://dx.doi.org/10.1177/1534735408326171
34.
34. K. H. Luk, R. M. Hulse, and T. L. Phillips, West. J. Med. 132, 179 (1980).
35.
35. R. A. Steeves, Bull. N. Y. Acad. Med. 68, 341 (1992).
36.
36. J. M. Brown, Mol. Med. Today 6, 157 (2000).
http://dx.doi.org/10.1016/S1357-4310(00)01677-4
37.
37. B. Keith and M. C. Simon, Cell 129, 465 (2007).
http://dx.doi.org/10.1016/j.cell.2007.04.019
38.
38. I. F. Tannock and D. Rotin, Cancer Res 49, 4373 (1989).
39.
39. R. A. Robergs, F. Ghiasvand, and D. Parker, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R502 (2004).
http://dx.doi.org/10.1152/ajpregu.00114.2004
40.
40. S. Klawansky and M. S. Fox, J. Theor. Biol. 111, 531 (1984).
http://dx.doi.org/10.1016/S0022-5193(84)80238-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699046
Loading
/content/aip/journal/adva/2/1/10.1063/1.3699046
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3699046
2012-03-22
2014-10-21

Abstract

Organisms (like amoebae, bacteria, etc.), whose population in an unlimited nutritive medium would grow exponentially with time, behave often as aggressive strain with respect to higher organisms. Higher organisms provide a medium very different from the unlimited one considered above; among the various niches where the strain growth is possible, the circulatory system plays a special role. The topological structure of the circulatory system (two interlocked trees addressed to the delivery of O2 and nutritive substances to all tissues forming the higher organism and to the elimination of metabolic wastes) poses constraints to the growth of the strain population. The immune system is devoted to control and eventually to terminate the strain growing inside the organism. In many cases the immune system is sufficiently effective for that; there is a case, however, for which the immune system generally fails—cancer. In this work, after considering a few elementary properties of the growth of strains and higher organisms, I shall consider how the structure of the latter affects the population dynamics of cancer, and identify a possible reason why the immune system is so ineffective in recognizing cancercells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3699046.html;jsessionid=1j7o2o4hbwssp.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3699046&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Host-guest interaction in cancer and a reason for the poor efficiency of the immune system in its detection and termination
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699046
10.1063/1.3699046
SEARCH_EXPAND_ITEM