Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3699049
1.
1. E. P. Wigner, Nuclear Physics B (Proc. Suppl.) 6, 7 (1989).
http://dx.doi.org/10.1016/0920-5632(89)90401-5
2.
2. E. Schrodinger, What is life? (Cambridge University Press, Cambridge, 1944).
3.
3. D. Hanahan and R. Weinberg, Cell 100, 57 (2000).
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
4.
4. Z. Bajzer and S. Vuk-Pavlovic, Journal Theor Med 2, 307 (2000).
http://dx.doi.org/10.1080/10273660008833057
5.
5. P. Tracqui, Reports on Progress in Physics 72, 056701 (2009).
http://dx.doi.org/10.1088/0034-4885/72/5/056701
6.
6. C. A. Hunt, G. E. Ropella, T. N. Lam, J. Tang, S. H. Kim, J. A. Engelberg, and S. Sheikh-Bahaei, Pharm Res 26, 2369 (2009).
http://dx.doi.org/10.1007/s11095-009-9958-3
7.
7. J. M. Nitsche, Annu. Rev. Biomed. Eng. 1, 463 (1999).
http://dx.doi.org/10.1146/annurev.bioeng.1.1.463
8.
8. L. Heinemann, G. Simpson, N. Annels, R. Vile, A. Melcher, R. Prestwich, K. Harrington, and H. Pandha, Molecular Therapy (2010).
9.
9. R. Chignola and E. Milotti, Physica A: Statistical Mechanics and its Applications 338, 261 (2004).
http://dx.doi.org/10.1016/j.physa.2004.02.049
10.
10. R. Chignola, A. DelFabbro, M. Farina, and E. Milotti, Journal of Bioinformatics and Computational Biology 9, 559 (2011).
http://dx.doi.org/10.1142/S0219720011005379
11.
11. R. Sutherland, Science 240, 177 (1988).
http://dx.doi.org/10.1126/science.2451290
12.
12. E. Milotti and R. Chignola, PLoS One 5, e13942 (2010).
http://dx.doi.org/10.1371/journal.pone.0013942
13.
13. L. Dagum and R. Menon, Computational Science & Engineering, IEEE 5, 46 (1998).
http://dx.doi.org/10.1109/99.660313
14.
14. R. Chignola and E. Milotti, Phys Biol 2, 8 (2005).
http://dx.doi.org/10.1088/1478-3967/2/1/002
15.
15. R. Chignola, A. Fabbro, C. Pellegrina, and E. Milotti, Physical Biology 4, 114 (2007).
http://dx.doi.org/10.1088/1478-3975/4/2/005
16.
16. N. Catlett and L. Weisman, Current opinion in cell biology 12, 509 (2000).
http://dx.doi.org/10.1016/S0955-0674(00)00124-1
17.
17. T. Bergeland, J. Widerberg, O. Bakke, and T. Nordeng, Current Biology 11, 644 (2001).
http://dx.doi.org/10.1016/S0960-9822(01)00177-4
18.
18.CGAL, Computational Geometry Algorithms Library,” http://www.cgal.org.
19.
19. M. De Berg, O. Cheong, and M. Van Kreveld, Computational geometry: algorithms and applications (Springer-Verlag New York Inc, 2008).
20.
20. H. Edelsbrunner and E. Mücke, in Proceedings of the 1992 workshop on Volume visualization (ACM, 1992) pp. 7582.
21.
21. T. Dey, H. Edelsbrunner, and S. Guha, in Advances in Discrete and Computational Geometry (Citeseer, 1999).
22.
22. E. Milotti, A. Del Fabbro, and R. Chignola, Computer Physics Communications 180, 2166 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.06.021
23.
23. E. Palsson, Future Generation Computer Systems 17, 835 (2001).
http://dx.doi.org/10.1016/S0167-739X(00)00062-5
24.
24. F. Galbusera, M. Cioffi, and M. T. Raimondi, Biomed Microdevices 10, 547 (2008).
http://dx.doi.org/10.1007/s10544-008-9164-9
25.
25. C. Wei, P. M. Lintilhac, and J. J. Tanguay, Plant Physiol 126, 1129 (2001).
http://dx.doi.org/10.1104/pp.126.3.1129
26.
26. J. Galle, M. Loeffler, and D. Drasdo, Biophys J 88, 62 (2005).
http://dx.doi.org/10.1529/biophysj.104.041459
27.
27. C. Zhu, J Biomech 33, 23 (2000).
http://dx.doi.org/10.1016/S0021-9290(99)00163-3
28.
28. G. I. Bell, M. Dembo, and P. Bongrand, Biophys J 45, 1051 (1984).
http://dx.doi.org/10.1016/S0006-3495(84)84252-6
29.
29. F. Lang and S. Waldegger, American scientist 85, 456 (1997).
30.
30. F. Wehner, H. Olsen, H. Tinel, E. Kinne-Saffran, and R. Kinne, Reviews of Physiology, Biochemistry and Pharmacology, 1 (2003).
http://dx.doi.org/10.1007/978-3-540-44834-1
31.
31. C. Bortner and J. Cidlowski, Cell death and differentiation 9, 1307 (2002).
http://dx.doi.org/10.1038/sj.cdd.4401126
32.
32. E. Flekkøy, P. Coveney, and G. De Fabritiis, Physical Review E 62, 2140 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.2140
33.
33. W. Dzwinel, D. Yuen, and K. Boryczko, Journal of molecular modeling 8, 33 (2002).
http://dx.doi.org/10.1007/s00894-001-0068-3
34.
34. Wolfram Research Inc., Champaign, Illinois, Mathematica Edition: Version 8.0 (Wolfram Research Inc., 2010).
35.
35.ParaView,” http://www.paraview.org/.
36.
36. P. Yu, M. Mustata, J. Turek, P. French, M. Melloch, and D. Nolte, Applied physics letters 83, 575 (2003).
http://dx.doi.org/10.1063/1.1594830
37.
37. P. Yu, M. Mustata, L. Peng, J. Turek, M. Melloch, P. French, and D. Nolte, Applied optics 43, 4862 (2004).
http://dx.doi.org/10.1364/AO.43.004862
38.
38. D. Nolte, R. An, J. Turek, and K. Jeong, Journal of Laboratory Automation (2011).
39.
39. J. Fisher and T. Henzinger, Nature biotechnology 25, 1239 (2007).
http://dx.doi.org/10.1038/nbt1356
40.
40. C. Hunt, G. Ropella, S. Park, and J. Engelberg, Nature biotechnology 26, 737 (2008).
http://dx.doi.org/10.1038/nbt0708-737
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699049
Loading
/content/aip/journal/adva/2/1/10.1063/1.3699049
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3699049
2012-03-22
2016-12-11

Abstract

At present it is still quite difficult to match the vast knowledge on the behavior of individual tumorcells with macroscopic measurements on clinical tumors. On the modeling side, we already know how to deal with many molecular pathways and cellular events, using systems of differential equations and other modeling tools, and ideally, we should be able to extend such a mathematical description up to the level of large tumor masses. An extended model should thus help us forecast the behavior of large tumors from our basic knowledge of microscopic processes. Unfortunately, the complexity of these processes makes it very difficult – probably impossible – to develop comprehensive analytical models. We try to bridge the gap with a simulation program which is based on basic biochemical and biophysical processes – thereby building an effective computational model – and in this paper we describe its structure, endeavoring to make the description sufficiently detailed and yet understandable.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3699049.html;jsessionid=aNJgfDlrzjF58z7JGU57nYNJ.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3699049&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3699049&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3699049'
Right1,Right2,Right3,