Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3699057
1.
1. O. Warburg, K. Posener, and E. Negelein, “Über den Stoffwechsel der Carcinomzelle,” Biochem. Z. 152, 309 (1924).
2.
2. O. Warburg, “On the Origin of Cancer Cells,” Science 123, 309 (1956).
http://dx.doi.org/10.1126/science.123.3191.309
3.
3. H. Fröhlich, “Quantum Mechanical Concepts in Biology,” in Theoretical Physics and Biology, 1st Int. Conf. Theor. Phys. Biol., Versailles, edited by M. Marois (North Holland, Amsterdam, 13, 1969).
4.
4. H. Fröhlich, “Bose Condensation of Strongly Excited Longitudinal Electric Modes,” Phys. Lett. A 26, 402 (1968).
http://dx.doi.org/10.1016/0375-9601(68)90242-9
5.
5. H. Fröhlich, “Collective Behaviour of Non-Linearly Coupled Oscillating Fields (with Applications to Biological Systems),” J. Collective Phenom. 1, 101 (1973).
6.
6. H. Fröhlich, “The Biological Effects of Microwaves and Related Questions,” In Advances Electronics Electron. Phys. 53, 85 (1980).
http://dx.doi.org/10.1016/S0065-2539(08)60259-0
7.
7. H. Haken, “Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems,” Rev. Modern Phys. 47, 67 (1975).
http://dx.doi.org/10.1103/RevModPhys.47.67
8.
8. H. A. Pohl, “Oscillating Fields about Growing Cells,” Int. J. Quant. Chem. Quant. Biol. Symp. 7, 411 (1980).
9.
9. R. Hölzel and I. Lamprecht, “Electromagnetic Fields around Biological Cells,” Neural Net. World 4, 327 (1994).
10.
10. R. Hölzel, “Electric Activity of Non-Excitable Biological Cells at Radio Frequencies,” Electro- and Magnetobiol. 20, 1 (2001).
http://dx.doi.org/10.1081/JBC-100103156
11.
11. J. Pokorný, F. Jelínek, V. Trkal, I. Lamprecht, and R. Hölzel, “Vibrations in Microtubules,” J. Biol. Phys. 23, 171 (1997).
http://dx.doi.org/10.1023/A:1005092601078
12.
12. J. Pokorný, F. Jelínek, and V. Trkal, “Electric field around microtubules,” Bioelectrochem. Bioenergetics 45, 239 (1998).
http://dx.doi.org/10.1016/S0302-4598(98)00100-7
13.
13. J. Pokorný, J. Hašek, F. Jelínek, J. Šaroch, and B. Palán, “Electromagnetic Activity of Yeast Cells in the M Phase,” Electro- Magnetobiol. 20, 371 (2001).
http://dx.doi.org/10.1081/JBC-100108577
14.
14. S. Sahu, S. Ghosh, K. Hirata, D. Fujita, and A. Bandyopadhyay, “Ultra-fast condensation of tubulins into microtubule unravels a generic resonance engineering,” (personal communication).
15.
15. E. D. Kirson, Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, Y. Wasserman, R. Schatzberger, and Y. Palti, “Disruption of Cancer Cell Replication by Alternating Electric Fields,” Cancer Res. 64, 3288 (2004).
http://dx.doi.org/10.1158/0008-5472.CAN-04-0083
16.
16. E. D. Kirson, V. Dbalý, F. Tovaryš, J. Vymazal, J. F. Soustiel, A. Itzhaki, D. Mordechovich, S. Steinberg-Shapira, Z. Gurvich, R. Schneiderman, Y. Wasserman, M. Salzberg, B. Ryffel, D. Goldsher, E. Dekel, and Y. Palti, “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors,” PNAS 104, 10152 (2007).
http://dx.doi.org/10.1073/pnas.0702916104
17.
17. C. Vedruccio and A. Meessen, “EM Cancer Detection by Means of Non-Linear Resonance Interaction,” in Proceedings PIERS, Progress in Electromagnetics Research Symposium, Pisa, Italy, March 28–31 2004, 909 (2004).
18.
18. J. Pokorný, C. Vedruccio, M. Cifra, and O. Kučera, “Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules,” Eur. Biophys. J. 40, 747 (2011).
http://dx.doi.org/10.1007/s00249-011-0688-1
19.
19. J. Pokorný, J. Hašek, J. Vaniš, and F. Jelínek, “Biophysical aspects of cancer – electromagnetic mechanism,” Indian J. Exper. Biol. 46, 310 (2008).
20.
20. J. Pokorný, “Endogenous Electromagnetic Forces in Living Cells: Implications for Transfer of Reaction Components,” Electro- Magnetobiol. 20, 59 (2001).
http://dx.doi.org/10.1081/JBC-100103160
21.
21. J. Pokorný, “Excitation of vibration in microtubules in living cell,” Bioelectrochem. 63, 321 (2004).
http://dx.doi.org/10.1016/j.bioelechem.2003.09.028
22.
22. J. Pokorný, J. Hašek, and F. Jelínek, “Electromagnetic Field in Microtubules: Effects on Transfer of Mass Particles and Electrons,” J. Biol. Phys. 31, 501 (2005).
http://dx.doi.org/10.1007/s10867-005-1286-1
23.
23. J. Pokorný, “Biophysical Cancer Transformation Pathway,” Electromagn. Biol. Med. 28, 105 (2009).
http://dx.doi.org/10.1080/15368370802711615
24.
24. J. Pokorný, “Fröhlich's Coherent Vibrations in Healthy and Cancer Cells,” Neural Netw. World 19, 369 (2009).
25.
25. R. Damadian, “Tumor detection by nuclear magnetic resonance,” Science 171, 1151 (1971).
http://dx.doi.org/10.1126/science.171.3976.1151
26.
26. L. A. Amos, “Structure of Microtubules,” in Microtubules, edited by K. Roberts and J. S. Hyams (Academic Press, London–New York, 1, 1979).
27.
27. H. Stebbings and C. Hunt, “The nature of the clear zone around microtubules,” Cell Tissue Res. 227, 609 (1982).
http://dx.doi.org/10.1007/BF00204791
28.
28. G. Ling, “A new theoretical foundation for the polarized-oriented multilayer theory of cell water and for inanimate systems demonstrating long-range dynamic structuring of water molecules,” Physiol. Chem. Phys. Med. NMR 35, 91 (2006).
29.
29. J. Zheng and G. H. Pollack, “Long-range forces extending from polymer-gel surfaces,” Phys. Rev. E 68, 0314081 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.031408
30.
30. J. Zheng, W. Chin, E. Khijniak, E. Khijniak Jr., and G. H. Pollack, “Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact,” Advanc. colloid interface sci. 127, 19 (2006).
http://dx.doi.org/10.1016/j.cis.2006.07.002
31.
31. G. Pollack, I. Cameron, and D. Wheatley, Water and the Cell (Springer, Dodrecht, 2006).
32.
32. B. Chai, H. Yoo, and G. H. Pollack, “Effect of radiant energy on near-surface water,” J. Phys. Chem. B 113, 13953 (2009).
http://dx.doi.org/10.1021/jp908163w
33.
33. B. Chai, J. Zheng, Q. Zhao, and G. H. Pollack, “Spectroscopic studies of solutes in aqueous solution,” J. Phys. Chem. A 112, 2242 (2008).
http://dx.doi.org/10.1021/jp710105n
34.
34. S. Zimmerman, A. M. Zimmerman, G. D. Fullerton, R. F. Luduena, and I. L. Cameron, “Water Ordering during the Cell Cycle: Nuclear Magnetic Resonance Studies of the Sea-Urchin Egg,” J. Cell Sci. 79, 247 (1985).
35.
35. E. C. Fuchs, J. Woisetschläger, K. Gatterer, E. Maier, R. Pecnik, and H. Eisenkölbl, “The floating water bridge,” J. Phys. D: Appl. Phys. 40, 6112 (2007).
http://dx.doi.org/10.1088/0022-3727/40/19/052
36.
36. E. C. Fuchs, K. Gatterer, G. Holler, and J. Woisetschläger, “Dynamics of the floating water bridge,” J. Phys. D: Appl. Phys. 41, 1855021 (2008).
http://dx.doi.org/10.1088/0022-3727/41/18/185502
37.
37. E. C. Fuchs, B. Bitschnau, J. Woisetschläger, E. Maier, B. Beuneu, and J. Teixeira, “Neutron scattering of a floating heavy water bridge,” J. Phys. D: Appl. Phys. 42, 0655021 (2009).
http://dx.doi.org/10.1088/0022-3727/42/6/065502
38.
38. L. Giuliani, E. D’Emilia, A. Lisi, S. Grimaldi, A. Foletti, and E. Del Giudice, “The Floating Water Bridge under Strong Electric Potential,” Neural Netw. World 19, 393 (2009).
39.
39. G. Preparata, QED Coherence in Matter (World Scientific, New Jersey, London, Hong Kong, 1995).
40.
40. E. Del Giudice, V. Elia, and A. Tedeschi, “The role of water in the living organisms,” Neural Netw. World 19, 355 (2009).
41.
41. E. Del Giudice and A. Tedeschi, “Water and Autocatalysis in Living Matter,” Electromagn. Biol. Med. 28, 46 (2009).
http://dx.doi.org/10.1080/15368370802708728
42.
42. K. M. Tyner, R. Kopelman, and M. A. Philbert, “‘Nanosized Voltmeter’ Enables Cellular-Wide Electric Field Mapping,” Biophys. J. 93, 1163 (2007).
http://dx.doi.org/10.1529/biophysj.106.092452
43.
43. R. Tilbury and T. Quickenden, “Luminescence from the yeast Candida utilis and comparisons across three genera,” J. Biolum. Chemilum. 7, 245 (1992).
http://dx.doi.org/10.1002/bio.1170070404
44.
44. A. P. Batyanov, “Distant Optical Interaction of the Mitochondria through Quartz,” Byuleten Exper. Biol. Med. 97, 675 (1984).
45.
45. A. P. Batyanov, “Correlation between Mitochondria Metabolism and the Physical Characteristics of Incubation Cells,” In Biophotonics. Non-equilibrium and Coherent Systems in Biology, Biophysics and Biotechnology, edited by L. Belousov, and F.-A. Popp, (Bioinform Services Co, Moscow, 439, 1995).
46.
46. M. Satarić, J. A. Tuszyński, and R. B. Žakula, “Kinklike Excitations as an Energy Transfer Mechanism in Microtubules,” Phys. Rev. E 48, 589 (1993).
http://dx.doi.org/10.1103/PhysRevE.48.589
47.
47. J. A. Tuszyński, S. Hameroff, M. Satarić, B. Trpisova, and M. L. A. Nip, “Ferroelectric Behavior in Microtubule Dipole Lattices: Implications for Information Processing, Signaling and Assembly/Disassembly,” J. theor. Biol. 174, 371 (1995).
http://dx.doi.org/10.1006/jtbi.1995.0105
48.
48. R. Stracke, K. J. Böhm, L. Wollweber, J. A. Tuszyński, and E. Unger, “Analysis of the Migration of Single Microtubules in Electric Fields,” Biochem. Biophys. Res. Comm. 293, 602 (2002).
http://dx.doi.org/10.1016/S0006-291X(02)00251-6
49.
49. A. E. Pelling, D. W. Dawson, D. M. Carreon, J. J. Christiansen, R. R. Shen, M. A. Teitell, and J. K. Gimzewski, Distinct contributions of microtubule subtypes to cell membrane shape and stability, “Distinct contributions of microtubule subtypes to cell membrane shape and stability,” Nanomed.: Nanotechnol. Biol. Med. 3, 43 (2007).
http://dx.doi.org/10.1016/j.nano.2006.11.006
50.
50. A. E. Pelling, S. Sehati, E. B. Gralla, J. S. Valentine, and J. K. Gimzewski, “Local Nano-mechanical Motion of the Cell Wall of Saccharomyces cerevisiae,” Science 305, 1147 (2004).
http://dx.doi.org/10.1126/science.1097640
51.
51. A. E. Pelling, S. Sehati, E. B. Gralla, and J. K. Gimzewski, “Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast,” Nanomed.: Nanotechnol. Biol. Med. 1, 178 (2005).
http://dx.doi.org/10.1016/j.nano.2005.04.002
52.
52. F. Jelínek, M. Cifra, J. Pokorný, J. Vaniš, J. Šimša, J. Hašek, and I. Frýdlová, “Measurement of Electrical Oscillations and Mechanical Vibrations of Yeast Cells Membrane around 1 kHz,” Electromag. Biol. Med. 28, 223 (2009).
http://dx.doi.org/10.1080/15368370802710807
53.
53. G. Albrecht–Buehler, “Rudimentary Form of Cellular ‘Vision’,” Proc. Natl. Acad. Sci. USA 89, 8288 (1992).
http://dx.doi.org/10.1073/pnas.89.17.8288
54.
54. G. Albrecht–Buehler, “Surface Extensions of 3T3 Cells towards Distant Infrared Light Sources,” J. Cell. Biol. 114, 493 (1991).
http://dx.doi.org/10.1083/jcb.114.3.493
55.
55. G. Albrecht–Buehler, “A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering,” PNAS 102, 5050 (2005).
http://dx.doi.org/10.1073/pnas.0407763102
56.
56. H. Frauenfelder, P. G. Volynes, and R. H. Austin, “Biological Physics,” Mod. Phys. 71, S419 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.S419
57.
57. S. Pavlides, D. Whitaker–Menezes, R. Castello–Cros, N. Flomenberg, A. K. Witkiewicz, P. G. Frank, M. C. Casimiro, Ch. Wang, P. Fortina, S. Addya, R. G. Pestell, U. E. Martinez-Outschoorn, F. Sotgia, and M. P. Lisanti, “The reverse Wartburg effect: aerobic glycolysis in cancer associated fibroblast and the tumor stroma,” Cell Cycle 8, 3984 (2009).
http://dx.doi.org/10.4161/cc.8.23.10238
58.
58. A. Jandová, J. Pokorný, J. Kobilková, M. Janoušek, J. Mašata, S. Trojan, M. Nedbalová, A. Dohnalová, A. Beková, V. Slavík, A. Čoček, and J. Sanitrák, “Cell-Mediated Immunity in Cervical Cancer Evolution,” Electromagn. Biol. Med. 28, 1 (2009).
http://dx.doi.org/10.1080/15368370802708868
59.
59. J. Pokorný, “The Role of Fröhlich's Coherent Excitations in Cancer Transformation of Cells,” In Herbert Fröhlich, FRS: A physicist ahead of his time, edited by G. J. Hyland, and P. Rowlands (The University of Liverpool, Liverpool, 177, 2006).
60.
60. M. Beil, A. Micoulet, G. von Wichert, S. Paschke, P. Walther, M. B. Omary, P. P. Van Veldhoven, U. Gern, E. Wolff-Hieber, J. Eggermann, J. Waltenberger, G. Adler, J. Spatz, and T. Seufferlein, “Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells,” Nature Cell Biol. 5, 803 (2003).
http://dx.doi.org/10.1038/ncb1037
61.
61. S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein, “Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria,” Acta Biomaterialia 1, 15 (2005).
http://dx.doi.org/10.1016/j.actbio.2004.09.001
62.
62. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Materialia 55, 3989 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.04.022
63.
63. K. R. Foster and J. W. Baisch, “Viscous damping of vibrations in microtubules,” J. Biol. Phys. 26, 255 (2000).
http://dx.doi.org/10.1023/A:1010306216654
64.
64. J. R. Reimers, L. K. McKemmish, R. H. McKenzie, A. E. Mark, and N. S. Hush, “Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness,” PNAS 106, 4219 (2009).
http://dx.doi.org/10.1073/pnas.0806273106
65.
65. L. K. McKemmish, J. R. Reimers, R. H. McKenzie, A. E. Mark, and N. S. Hush, “Penrose–Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible,” Phys. Rev. E 80, 0219121 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.021912
66.
66. I. Lamprecht, “Growth and metabolism in yeasts,” In Biological Microcalorimetry, edited by A. E. Beezer (Academic Press, London, 43112 (1980).
67.
67. O. Kučera, M. Cifra, and J. Pokorný, “Technical aspects of measurement of cellular electromagnetic field,” Eur. Biophys. J. 39, 1465 (2010).
http://dx.doi.org/10.1007/s00249-010-0597-8
68.
68. S. Bonnet, S. L. Archer, J. Allalunis-Turner, A. Haromy, Ch. Beaulieu, R. Thompson, Ch. T. Lee, G. D. Lopaschuk, L. Puttagunta, S. Bonnet, G. Harry, K. Hashimoto, Ch. J. Porter, M. A. Andrade, B. Thebaud, and E. D. Michelakis, “A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth,” Cancer Cell 11, 37 (2007).
http://dx.doi.org/10.1016/j.ccr.2006.10.020
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699057
Loading
/content/aip/journal/adva/2/1/10.1063/1.3699057
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3699057
2012-03-22
2016-12-07

Abstract

Mitochondria are organelles at the boundary between chemical–genetic and physical processes in living cells.Mitochondria supply energy and provide conditions for physical mechanisms. Protons transferred across the inner mitochondrial membrane diffuse into cytosol and form a zone of a strong static electric field changing water into quasi-elastic medium that loses viscosity damping properties. Mitochondria and microtubules form a unique cooperating system in the cell. Microtubules are electrical polar structures that make possible non-linear transformation of random excitations into coherent oscillations and generation of coherent electrodynamic field. Mitochondria supply energy, may condition non-linear properties and low damping of oscillations. Electrodynamic activity might have essential significance for material transport, organization, intra- and inter-cellular interactions, and information transfer. Physical processes in cancercell are disturbed due to suppression of oxidative metabolism in mitochodria (Warburg effect). Water ordering level in the cell is decreased, excitation of microtubule electric polar oscilations diminished, damping increased, and non-linear energy transformation shifted towards the linear region. Power and coherence of the generated electrodynamic field are reduced. Electromagnetic activity of healthy and cancercells may display essential differences. Local invasion and metastastatic growth may strongly depend on disturbed electrodynamic activity. Nanotechnological measurements may disclose yet unknown properties and parameters of electrodynamic oscillations and other physical processes in healthy and cancercells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3699057.html;jsessionid=oY3zzWoxRQOA9cjWGsoSkseq.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3699057&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3699057&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3699057'
Right1,Right2,Right3,