1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3699060
1.
1. Franziska Michor, Jan Liphardt, Mauro Ferrari, and Jonathan Widom, “What does physics have to do with cancer?,” Nature reviews 11(9), 657670 (2011).
http://dx.doi.org/10.1038/nrc3092
2.
2. M. Ferrari, “Frontiers in cancer nanomedicine: directing mass transport through biological barriers,” Trends Biotechnol 28(4), 181188 (2010).
http://dx.doi.org/10.1016/j.tibtech.2009.12.007
3.
3. Rakesh K. Jain, “Transport of Molecules, Particles, and Cells in Solid Tumors,” Annual Review of Biomedical Engineering 1(1), 241263 (1999).
http://dx.doi.org/10.1146/annurev.bioeng.1.1.241
4.
4. S. Nie, “Understanding and overcoming major barriers in cancer nanomedicine,” Nanomedicine (Lond) 5(4), 523528 (2010).
http://dx.doi.org/10.2217/nnm.10.23
5.
5. J. Sinek, H. Frieboes, X. Zheng, and V. Cristini, “Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles,” Biomed Microdevices 6(4), 297309 (2004).
http://dx.doi.org/10.1023/B:BMMD.0000048562.29657.64
6.
6. J. P. Sinek, S. Sanga, X. Zheng, H. B. Frieboes, M. Ferrari, and V. Cristini, “Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation,” J Math Biol 58(4-5), 485510 (2009).
http://dx.doi.org/10.1007/s00285-008-0214-y
7.
7. H. B. Frieboes, M. E. Edgerton, J. P. Fruehauf, F. R. Rose, L. K. Worrall, R. A. Gatenby, M. Ferrari, and V. Cristini, “Prediction of drug response in breast cancer using integrative experimental/computational modeling,” Cancer Res 69(10), 44844492 (2009).
http://dx.doi.org/10.1158/0008-5472.CAN-08-3740
8.
8. Helen M. Byrne, “Dissecting cancer through mathematics: from the cell to the animal model,” Nature reviews 10(3), 221230 (2010).
http://dx.doi.org/10.1038/nrc2808
9.
9. J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise, and V. Cristini, “Nonlinear modelling of cancer: bridging the gap between cells and tumours,” Nonlinearity 23(1), R1R9 (2010).
http://dx.doi.org/10.1088/0951-7715/23/1/R01
10.
10. I. M. van Leeuwen, C. M. Edwards, M. Ilyas, and H. M. Byrne, “Towards a multiscale model of colorectal cancer,” World J Gastroenterol 13(9), 13991407 (2007).
11.
11. Tiina Roose, S. Jonathan Chapman, and Philip K. Maini, “Mathematical Models of Avascular Tumor Growth,” SIAM Rev. 49(2), 179208 (2007).
http://dx.doi.org/10.1137/S0036144504446291
12.
12. Sergey Astanin and Luigi Preziosi, “Multiphase Models of Tumour Growth: Selected Topics in Cancer Modeling”, (Birkhuser, Boston, 2008), pp. 131.
13.
13. H. L. Harpold, E. C. Alvord Jr., and K. R. Swanson, “The evolution of mathematical modeling of glioma proliferation and invasion,” J Neuropathol Exp Neurol 66(1), 19 (2007).
http://dx.doi.org/10.1097/nen.0b013e31802d9000
14.
14. A. R. Anderson and V. Quaranta, “Integrative mathematical oncology,” Nature reviews 8(3), 227234 (2008).
http://dx.doi.org/10.1038/nrc2329
15.
15. T. S. Deisboeck, L. Zhang, J. Yoon, and J. Costa, “In silico cancer modeling: is it ready for prime time?,” Nat Clin Pract Oncol 6(1), 3442 (2009).
http://dx.doi.org/10.1038/ncponc1237
16.
16. A. C. Ventura, T. L. Jackson, and S. D. Merajver, “On the role of cell signaling models in cancer research,” Cancer Res 69(2), 400402 (2009).
http://dx.doi.org/10.1158/0008-5472.CAN-08-4422
17.
17. A. R. Anderson and M. A. Chaplain, “Continuous and discrete mathematical models of tumor-induced angiogenesis,” Bull Math Biol 60(5), 857899 (1998).
http://dx.doi.org/10.1006/bulm.1998.0042
18.
18. S. R. McDougall, A. R. Anderson, M. A. Chaplain, and J. A. Sherratt, “Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies,” Bull Math Biol 64(4), 673702 (2002).
http://dx.doi.org/10.1006/bulm.2002.0293
19.
19. S. R. McDougall, A. R. Anderson, and M. A. Chaplain, “Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies,” J Theor Biol 241(3), 564589 (2006).
http://dx.doi.org/10.1016/j.jtbi.2005.12.022
20.
20. A. Stéphanou, S. McDougall, A. Anderson, and M. A. J. Chaplain, “Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis,” Math Comput Model 44, 96123 (2006).
http://dx.doi.org/10.1016/j.mcm.2004.07.021
21.
21. M. R. Owen, T. Alarcon, P. K. Maini, and H. M. Byrne, “Angiogenesis and vascular remodelling in normal and cancerous tissues,” J Math Biol 58(4-5), 689721 (2009).
http://dx.doi.org/10.1007/s00285-008-0213-z
22.
22. P. Macklin, S. McDougall, A. R. Anderson, M. A. Chaplain, V. Cristini, and J. Lowengrub, “Multiscale modelling and nonlinear simulation of vascular tumour growth,” J Math Biol 58(4-5), 765798 (2009).
http://dx.doi.org/10.1007/s00285-008-0216-9
23.
23. T. L. Jackson, “Intracellular accumulation and mechanism of action of doxorubicin in a spatio-temporal tumor model,” J Theor Biol 220(2), 201213 (2003).
http://dx.doi.org/10.1006/jtbi.2003.3156
24.
24. E. S. Norris, J. R. King, and H. M. Byrne, “Modelling the response of spatially structured tumours to chemotherapy: drug kinetics,” Math Comput Model 43, 820837 (2006).
http://dx.doi.org/10.1016/j.mcm.2005.09.026
25.
25. H. Enderling, M. A. Chaplain, A. R. Anderson, and J. S. Vaidya, “A mathematical model of breast cancer development, local treatment and recurrence,” J Theor Biol 246(2), 245259 (2007).
http://dx.doi.org/10.1016/j.jtbi.2006.12.010
26.
26. V. Cristini, J. Lowengrub, and Q. Nie, “Nonlinear simulation of tumor growth,” J Math Biol 46(3), 191224 (2003).
http://dx.doi.org/10.1007/s00285-002-0174-6
27.
27. V. Cristini, H. B. Frieboes, R. Gatenby, S. Caserta, M. Ferrari, and J. Sinek, “Morphologic instability and cancer invasion,” Clin Cancer Res 11(19 Pt 1), 67726779 (2005).
http://dx.doi.org/10.1158/1078-0432.CCR-05-0852
28.
28. H. B. Frieboes, X. Zheng, C. H. Sun, B. Tromberg, R. Gatenby, and V. Cristini, “An integrated computational/experimental model of tumor invasion,” Cancer Res 66(3), 15971604 (2006).
http://dx.doi.org/10.1158/0008-5472.CAN-05-3166
29.
29. H. B. Frieboes, J. S. Lowengrub, S. Wise, X. Zheng, P. Macklin, E. L. Bearer, and V. Cristini, “Computer simulation of glioma growth and morphology,” Neuroimage 37 Suppl 1, S5970 (2007).
http://dx.doi.org/10.1016/j.neuroimage.2007.03.008
30.
30. H. B. Frieboes, F. Jin, Y. L. Chuang, S. M. Wise, J. S. Lowengrub, and V. Cristini, “Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis,” J Theor Biol 264(4), 12541278 (2010).
http://dx.doi.org/10.1016/j.jtbi.2010.02.036
31.
31. S. Sanga, J. P. Sinek, H. B. Frieboes, M. Ferrari, J. P. Fruehauf, and V. Cristini, “Mathematical modeling of cancer progression and response to chemotherapy,” Expert Rev Anticancer Ther 6(10), 13611376 (2006).
http://dx.doi.org/10.1586/14737140.6.10.1361
32.
32. A. R. Anderson, A. M. Weaver, P. T. Cummings, and V. Quaranta, “Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment,” Cell 127(5), 905915 (2006).
http://dx.doi.org/10.1016/j.cell.2006.09.042
33.
33. P. Macklin and J. S. Lowengrub, “Nonlinear simulation of the effect of microenvironment on tumor growth,” J Theor Biol 245, 677704 (2007).
http://dx.doi.org/10.1016/j.jtbi.2006.12.004
34.
34. X. Zheng, S. M. Wise, and V. Cristini, “Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method,” Bull Math Biol 67(2), 211259 (2005).
http://dx.doi.org/10.1016/j.bulm.2004.08.001
35.
35. M. Wu, H. B. Frieboes, S. McDougall, M. A. Chaplain, V. Cristini, and J. Lowengrub, “The effect of interstitial pressure on tumor growth and transport of therapeutic agents: coupling with the blood and lymphatic vascular systems,” (Submitted).
36.
36. A van de Ven, P. Kim, O. Haley, J. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S. Yun, and P. Decuzzi, “Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution,” JCR, In press. (2011).
37.
37. P. Decuzzi, B. Godin, T. Tanaka, S. Y. Lee, C. Chiappini, X. Liu, and M. Ferrari, “Size and shape effects in the biodistribution of intravascularly injected particles,” J Control Release 141(3), 320327 (2010).
http://dx.doi.org/10.1016/j.jconrel.2009.10.014
38.
38. Gu J. , Godin B. , Serda R. E. , Ferrati S. , Liu X. , “Multistage mesoporous silicon-based nanocarriers: biocompatibility and controlled degradation in physiological fluids,” 35th Annual Meeting & Exposition of the Controlled Release Society 575 (New York City, New York) (2008).
39.
39. T. Tanaka, L. S. Mangala, P. E. Vivas-Mejia, R. Nieves-Alicea, A. P. Mann, E. Mora, H. D. Han, M. M. Shahzad, X. Liu, R. Bhavane, J. Gu, J. R. Fakhoury, C. Chiappini, C. Lu, K. Matsuo, B. Godin, R. L. Stone, A. M. Nick, G. Lopez-Berestein, A. K. Sood, and M. Ferrari, “Sustained small interfering RNA delivery by mesoporous silicon particles,” Cancer Res 70(9), 36873696 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-09-3931
40.
40. Huan Meng, Monty Liong, Tian Xia, Zongxi Li, Zhaoxia Ji, Jeffrey I. Zink, and Andre E. Nel, “Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line,” ACS Nano 4(8), 45394550 (2010).
http://dx.doi.org/10.1021/nn100690m
41.
41. Ji-Ho Park, Luo Gu, Geoffrey von Maltzahn, Erkki Ruoslahti, Sangeeta N. Bhatia, and Michael J. Sailor, “Biodegradable luminescent porous silicon nanoparticles for in vivo applications,” Nat Mater 8(4), 331336 (2009).
http://dx.doi.org/10.1038/nmat2398
42.
42. Biana Godin, Jianhua Gu, Rita E. Serda, Rohan Bhavane, Ennio Tasciotti, Ciro Chiappini, Xuewu Liu, Takemi Tanaka, Paolo Decuzzi, and Mauro Ferrari, “Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation,” Journal of Biomedical Materials Research Part A 94A(4), 12361243 (2010).
43.
43. Joseph J. Casciari, Stratis V. Sotirchos, and Robert M. Sutherland, “Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH,” Journal of Cellular Physiology 151(2), 386394 (1992).
http://dx.doi.org/10.1002/jcp.1041510220
44.
44. D. D. Sumner and J. T. Stevens, “Pharmacokinetic factors influencing risk assessment: saturation of biochemical processes and cofactor depletion,” Environ Health Perspect 102 Suppl 11, 1322 (1994).
http://dx.doi.org/10.1289/ehp.94102s1113
45.
45. R. Ganapathi, H. Schmidt, D. Grabowski, M. Melia, and N. Ratliff, “Modulation in vitro and in vivo of cytotoxicity but not cellular levels of doxorubicin by the calmodulin inhibitor trifluoperazine is dependent on the level of resistance,” British journal of cancer 58(3), 335340 (1988).
http://dx.doi.org/10.1038/bjc.1988.214
46.
46. C. Chiappini, E. Tasciotti, J. R. Fakhoury, D. Fine, L. Pullan, Y. C. Wang, L. Fu, X. Liu, and M. Ferrari, “Tailored porous silicon microparticles: fabrication and properties,” Chemphyschem 11(5), 10291035 (2010).
http://dx.doi.org/10.1002/cphc.200900914
47.
47. P. Decuzzi, R. Pasqualini, W. Arap, and M. Ferrari, “Intravascular delivery of particulate systems: does geometry really matter?,” Pharm Res 26(1), 235243 (2009).
http://dx.doi.org/10.1007/s11095-008-9697-x
48.
48. J. Lankelma, H. Dekker, F. R. Luque, S. Luykx, K. Hoekman, P. van der Valk, P. J. van Diest, and H. M. Pinedo, “Doxorubicin gradients in human breast cancer,” Clin Cancer Res 5(7), 17031707 (1999).
49.
49. A. J. Primeau, A. Rendon, D. Hedley, L. Lilge, and I. F. Tannock, “The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors,” Clin Cancer Res 11(24 Pt 1), 87828788 (2005).
http://dx.doi.org/10.1158/1078-0432.CCR-05-1664
50.
50. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature reviews 5(3), 161171 (2005).
http://dx.doi.org/10.1038/nrc1566
51.
51. R. E. Serda, A. Mack, A. L. van de Ven, S. Ferrati, K. Dunner Jr., B. Godin, C. Chiappini, M. Landry, L. Brousseau, X. Liu, A. J. Bean, and M. Ferrari, “Logic-embedded vectors for intracellular partitioning, endosomal escape, and exocytosis of nanoparticles,” Small 6(23), 26912700 (2010).
http://dx.doi.org/10.1002/smll.201000727
52.
52. M. Gutman, R. K. Singh, S. Yoon, K. Xie, C. D. Bucana, and I. J. Fidler, “Leukocyte-induced angiogenesis and subcutaneous growth of B16 melanoma,” Cancer Biother 9(2), 163170 (1994).
http://dx.doi.org/10.1089/cbr.1994.9.163
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699060
Loading
/content/aip/journal/adva/2/1/10.1063/1.3699060
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3699060
2012-03-22
2014-07-30

Abstract

Inefficient vascularization hinders the optimal transport of cell nutrients, oxygen, and drugs to cancer cells in solid tumors. Gradients of these substances maintain a heterogeneous cell-scale microenvironment through which drugs and their carriers must travel, significantly limiting optimal drug exposure. In this study, we integrate intravital microscopy with a mathematical model of cancer to evaluate the behavior of nanoparticle-based drug delivery systems designed to circumvent biophysical barriers. We simulate the effect of doxorubicin delivered via porous 1000 x 400 nm plateloid silicon particles to a solid tumor characterized by a realistic vasculature, and vary the parameters to determine how much drug per particle and how many particles need to be released within the vasculature in order to achieve remission of the tumor. We envision that this work will contribute to the development of quantitative measures of nanoparticle design and drug loading in order to optimize cancer treatment via nanotherapeutics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3699060.html;jsessionid=7g6nkh7ofh6s8.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3699060&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699060
10.1063/1.3699060
SEARCH_EXPAND_ITEM