1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3699063
1.
1. M. Durante and J. S. Loeffler, Nat. Rev. Clin. Oncol. 7, 37 (2010).
http://dx.doi.org/10.1038/nrclinonc.2009.183
3.
3. S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kunetsov, and F. Pegoraro, Phys. Lett. A 299, 240 (2002).
http://dx.doi.org/10.1016/S0375-9601(02)00521-2
4.
4. V. Malka, S. Friztler, E. Lefevbre, E. d’Humieres, R. Ferrand, G. Grillon, C. Albaret, S. Meyroneinc, J. P. Chambaret, A. Antonetti, and D. Hulin, Med. Phys, 31, 1587 (2004).
http://dx.doi.org/10.1118/1.1747751
5.
5. E. Fourkal, J. S. Li, W. Xiong, A. Nahurn, and C. M. Ma, Phys. Med. Biol. 48, 3977 (2003).
http://dx.doi.org/10.1088/0031-9155/48/24/001
6.
6. S. D. Kraft, C. Richter1, K. Zeil1, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T. E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. Schurer, M. Sobiella, J. Woithe, U. Schramm, and J. Pawelke, New Journal of Physics 12, 085003 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/085003
7.
7. A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, H. Numasaki, M. Murakami, Y. Demizu, S. Akagi, S. Nagayama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, M. Ikegami, M. Tampo, H. Sakaki, M. Suzuki, I. Daito, Y. Oishi, H. Sugiyama, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, P. R. Bolton, and H. Daido, Appl. Phys. Lett. 94, 181502 (2009).
http://dx.doi.org/10.1063/1.3126452
8.
8. A. Yogo, T. Maeda, T. Hori, H. Sakaki, K. Ogura, M. Nishiuchi, A. Sagisaka, H. Kiriyama, H. Okada, S. Kanazawa, T. Shimomura, Y. Nakai, M. Tanoue, F. Sasao, P. R. Bolton, M. Murakami, T. Nomura, S. Kawanishi, and K. Kondo, Appl. Phys. Lett. 98. 053701 (2011).
http://dx.doi.org/10.1063/1.3551623
9.
9. C. Richter, L. Karsch, Y. Dammene, S. D. Kraft, J. Metzkes, U. Schramm, M. Schurer, M. Sobiella, A. Weber, K. Zeil, and J. Pawelke, Phys. Med. Biol. 56, 1529 (2011).
http://dx.doi.org/10.1088/0031-9155/56/6/002
10.
10. E. Fourkal, I. Veltchev, C-M Ma, and J. Fan, Phys. Med. Biol 56, 3123 (2011).
http://dx.doi.org/10.1088/0031-9155/56/10/015
11.
11. T. Dzelzainis, G. Nersisyan, D. Riley, B. Ramakrishna, L. Romagnani, M. Borghesi, D. Doria, B. Dromey, M. Makita, S. White, S. Kar, D. Marlow, G. Sarri, M. Zepf, and C. L. S. Lewis, Laser Part. Beams 28, 451 (2010).
http://dx.doi.org/10.1017/S0263034610000467
12.
12. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).
http://dx.doi.org/10.1063/1.1333697
13.
13. M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. Mackinnon, P. Patel, and M. Roth, Fusion Sci. Tech. 49, 412 (2006).
15.
15. D. Kirby, S. Green, F. Fiorini, D. Parker, L. Romagnani, D. Doria, S. Kar, C. L. Lewis, M. Borghesi, and H. Palmans, Laser Part. Beams 29, 231 (2011).
http://dx.doi.org/10.1017/S0263034611000206
16.
16. T. G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, and P. R. Sala, AIP Conf. Proc 896, 31 (2007).
http://dx.doi.org/10.1063/1.2720455
17.
17. F. Fiorini, D. Kirby, M. Borghesi, D. Doria, J. C. G. Jeynes, K. F. Kakolee, S. Kar, S. Kaur, K. J. Kirkby, M. J. Merchant, and S. Green, Phys. Med. Biol. 56, 6969 (2011).
http://dx.doi.org/10.1088/0031-9155/56/21/013
18.
18. G. Schettino, M. Folkard, K. M. Prise, B. Vojnovic, K. D. Held, and B. D. Michael, Radiat. Res. 160, 505 (2003).
http://dx.doi.org/10.1667/RR3060
19.
19. B. G. Wouters, A. M. Sy, and L. D. Skarsgard, Radiat. Res. 146, 159170 (1996).
http://dx.doi.org/10.2307/3579588
20.
20. M. Folkard, K. M. Prise, B. Vojvonic, H. C. Newman, M. J Roper, and B. D. Michael, Int. J. Radiat. Biol 69, 729738 (1996).
http://dx.doi.org/10.1080/095530096145472
21.
21. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl Instr. Methods B Phys Res. 268, 18181823 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.02.091
22.
22. M. Belli, F. Cera, R. Cherubini, F. Ianzini, G. Moschini, O. Sapora, G. Simone, M. A. Tabocchini, and P. Tiveron, Int. J. Radiat. Biol 63, 331337 (1993).
http://dx.doi.org/10.1080/09553009314550441
23.
23. S. Auer, V. Hable, C. Greubel, G. A. Drexler, T. E. Schmid, C. Belka, G. Dollinger, and A. A. Friedl, Radiation Oncology 6, 139 (2011).
http://dx.doi.org/10.1186/1748-717X-6-139
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699063
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic of the experimental set-up. The blue and red lines represent the undeflected line of sight from the ion source to the cell plane and the trajectory of a deflected proton, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Energy spectra of the protons (arbitrary units) delivered to the four cell spots in one of the configurations employed in the experiment. The entrance LET corresponding to the proton energies is also shown.

Image of FIG. 3.

Click to view

FIG. 3.

Survival curve for the V79 cells obtained by irradiation with laser-accelerated proton bursts. The data are obtained using protons with energies in the range 1 - 5 MeV. A curve obtained by X-ray irradiation on the same cells, and using the same cell processing methodology, is also shown for comparison.

Image of FIG. 4.

Click to view

FIG. 4.

Survival curve of Fig. 3, where the LET is indicated for each of the data points. The LET is a volume average over the cell monolayer, calculated by SRIM according to the spectra of the protons entering the cell dot.

Image of FIG. 5.

Click to view

FIG. 5.

Direct comparison between selected data from Fig. 3 and published data with comparable LET and proton energies. Solid blue squares have LET=10 keV/μm (central energy 5 MeV), open squares have LET= 14 keV/μm (central energy: 3.7 MeV). Solid red squares are data points from Ref. 20, obtained with protons of 3.7 MeV (10 keV/μm LET) (Reproduced with permission from, Int. J. Radiat. Biol, 69, 729 (1996). Copyright 1996 Informa Healthcare). Green triangles are data points from Ref. 22, obtained with protons of 3.2 MeV (11 keV/μm LET) (Reproduced with permission from, Int. J. Radiat. Biol, 63, 331 (1993). Copyright 1993 Informa Healthcare).

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3699063
2012-03-22
2014-04-21

Abstract

The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of protonirradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109 Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3699063.html;jsessionid=z2wi5hawigeo.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3699063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3699063
10.1063/1.3699063
SEARCH_EXPAND_ITEM