1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Analyzing the propagating waves in the two-dimensional photonic crystal by the decoupled internal-field expansion method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/2/1/10.1063/1.3700236
1.
1. S. John, Phys. Rev. Lett. 58, 2486 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2486
2.
2. A. Z. Genack and N. Garcia, Phys. Rev. Lett. 66, 2064 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2064
3.
3. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
http://dx.doi.org/10.1364/OL.24.000711
4.
4. M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2140
5.
5. Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.8212
6.
6. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, Phys. Rev. B 63, 081107 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.081107
7.
7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R10096
8.
8. S. Foteinopoulou and C. M. Soukoulis, Phys. Rev. B 67, 235107 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.235107
9.
9. Natalia Malkova, David A. Scrymgeour, and Venkatraman Gopalan, Phys. Rev. B 72, 045144 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045144
10.
10. Suxia Yang, Tao Xu, and Harry Ruda, Phys. Rev. B 72, 075128 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075128
11.
11. R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, K. Guven, E. Ozbay, and C. M. Soukoulis, Phys. Rev. B 71, 085106 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.085106
12.
12. Irfan Bulu, Humeyra Caglayan, and Ekmel Ozbay, Phys. Rev. B 72, 04514 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.045124
13.
13. S. Foteinopoulou and C. M. Soukoulis, Phys. Rev. B 72, 165112 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165112
14.
14. Alejandro Martinez and Javier Marti, Phys. Rev. B 71, 235115 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235115
15.
15. M. Notomi, Phys. Rev. B 62, 10696 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10696
16.
16. Didier Felbacq and Rafik Smaali, Phys. Rev. Lett. 92, 1939021 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.193902
17.
17. Israel De Leon and Filippus S. Roux, Phys. Rev. B 71, 235105 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235105
18.
18. Wei Jiang, Ray T. Chen, and Xuejun Lu, Phys. Rev. B 71, 245115 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.245115
19.
19. Kazuaki Sakoda, Phys. Rev. B 51, 4672 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4672
20.
20. Kazuaki Sakoda, Phys. Rev. B 52, 8992 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.8992
21.
21. Kazuaki Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
22.
22. D. Cassagne, C. Jouanin, and D. Bertho, Appl. Phys. Lett. 70, 289 (1997).
http://dx.doi.org/10.1063/1.118395
23.
23. S. Rowson, A. Chelnokov, C. Cuisin, and J.-M. Lourtioz, J. Opt. A: Pure Appl. Opt. 1, 483 (1999).
http://dx.doi.org/10.1088/1464-4258/1/4/312
24.
24. S. Rowson, A. Chelnokov, and J.-M. Lourtioz, J. Lightwave Tech. 17, 1989 (1999).
http://dx.doi.org/10.1109/50.802985
25.
25. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. de la Rue, R. Houdre, U. Oesterle, and C. Jouanin, J. Lightwave Tech. 17, 2063 (1999).
http://dx.doi.org/10.1109/50.802996
26.
26. J. Schilling, R. B. Wehrspohn, A. Birner, F. Müller, R. Hillebrand, U. Gösele, S. W. Leonard, J. P. Mondia, F. Genereux, H. M. van Driel, P. Kramper, V. Sandoghdar, and K. Busch, J. Opt. A: Pure Appl. Opt. 3, S121 (2001).
http://dx.doi.org/10.1088/1464-4258/3/6/362
27.
27. Ying Xu, Hong-Bo Sun, Jia-Yu Ye, Shigeki Matsuo, and Hiroaki Misawa, J. Opt. Soc. Am. B 18, 1084 (2001).
http://dx.doi.org/10.1364/JOSAB.18.001084
28.
28. Anne-Laure Fehrembach and Anne Sentenac, J. Opt. Soc. Am. A 20, 481 (2003).
http://dx.doi.org/10.1364/JOSAA.20.000481
29.
29. Anne-Laure Fehrembach and Anne Sentenac, Appl. Phys. Lett. 86, 121105 (2005).
http://dx.doi.org/10.1063/1.1886895
30.
30. Onur Kilic, Michel Digonnet, Gordon Kino, and Olav Solgaard, Opt. Express 16, 13090 (2008).
http://dx.doi.org/10.1364/OE.16.013090
31.
31. Ken-Ming Lin and G. Y. Guo, J. Opt. Soc. Am. B 25, C75 (2008).
http://dx.doi.org/10.1364/JOSAB.25.000C75
32.
32. Ilaria Gallina, Marco Pisco, Armando Ricciardi, Stefania Campopiano, Giuseppe Castaldi, Andrea Cusano, and Vincenzo Galdi, Opt. Express 17, 19586 (2009).
http://dx.doi.org/10.1364/OE.17.019586
33.
33. Massimo Moccia, Marco Pisco, Antonello Cutolo, Vincenzo Galdi, Pierantonio Bevilacqua, and Andrea Cusano, Opt. Express 20, 18842 (2011).
http://dx.doi.org/10.1364/OE.19.018842
34.
34. A. Yariv and P. Yeh, Optical Waves in Crystals (Jonh Wiley & Sons, 1984).
35.
35. Chao-Hsien Kuo and Zhen Ye, Phys. Rev. E 70, 046617 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.046617
36.
36. Z. Y. Li and K. M. Ho, Phys. Rev. B 68, 155101 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155101
37.
37. Maksim Skorobogatiy and Jiamke Yang, Fundamentals of Photonic Crystal Guiding (Cambridge University Press, 2008).
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3700236
Loading
/content/aip/journal/adva/2/1/10.1063/1.3700236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3700236
2012-03-27
2014-10-20

Abstract

We propose the decoupled internal-field expansion (IFE) method to discuss refractions in the photonic crystal(PhC). This method decouples the full wave in the PhC and classifies them into two categories including the forward-propagating and backward-propagating waves denoted by the index n. A triangular-PhC case is demonstrated and both positive and negative refractions are discussed by this method. The incident angle of 10° results in the positive refracted wave with the refracted angle about 8°, which approximately corresponds to the forward wave of n=0 order. The negative refracted waves, which exist in the left and right edge regions, propagate almost parallel to the interfaces between the PhC and outside media. Meanwhile, due to the interaction between the negative refracted wave and the nearest few rows of air cylinders, the reflected wave and another weaker negative refracted wave are created. Finally, the weaker negative refracted waves from both edge regions interfere with each other in the middle region. It is found out that the negative refracted waves in edge regions as well as the interfered wave in the middle region can be constructed by two n=-1 forward and backward waves. On the other hand, the positive refracted wave is composed of the n=0 forward wave dressed other n≠0 forward waves, the propagation angle is affected by these dressed waves, especially near the edge region. Finally, another case proves this point of view explicitly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3700236.html;jsessionid=6kd805a0t8fnl.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3700236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Analyzing the propagating waves in the two-dimensional photonic crystal by the decoupled internal-field expansion method
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3700236
10.1063/1.3700236
SEARCH_EXPAND_ITEM