Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3700433
1.
1. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, et al., Nature 6, 129 (2007).
http://dx.doi.org/10.1038/nmat1821
2.
2. W. Wunderlich, H. Ohta, and K. Koumoto, Physica B 404, 2202 (2009).
http://dx.doi.org/10.1016/j.physb.2009.04.012
3.
3. A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J. M. Triscone, Nature 456, 624 (2008).
http://dx.doi.org/10.1038/nature07576
4.
4. Y. J. Chang, A. Bostwick, Y. S. Kim, K. Horn, and E. Rotenberg, Phys. Rev. B 81, 235109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235109
5.
5. E. Heifets, E. Kotomin, and V. A. Trepakov, J. Phys.: Condens. Matter. 18, 4845 (2006).
http://dx.doi.org/10.1088/0953-8984/18/20/009
6.
6. Y. X. Wang, W. L. Zhong, C. L. Wang, and P. L. Zhang, Solid State Comm. 120, 133 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00330-1
7.
7. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1997).
8.
8. J. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
9.
9. R. I. Eglitis, S. Piskunov, E. Heifets, E. A. Kotomin, and G. Borstel, Ceramics International 30, 1989 (2004).
http://dx.doi.org/10.1016/j.ceramint.2003.12.176
10.
10. S. Piskunov, E. Heifets, and G. Borstel, Computational Materials Science 29, 165 (2004).
http://dx.doi.org/10.1016/j.commatsci.2003.08.036
11.
11. S. Tinte, M. G. Stachiotti, C. O. Rodriquez, N. E. Novikov, and D. L. Christensen, Phys. Rev. B 59, 1959 (1998).
12.
12. Y. Jiangni, Z. Zhiyong, and Z. Fuchun, Chinese J. of Semics. 27, 1537 (2006).
13.
13. M. Q. Cai and M. S. Zhang, Chem. Phys. Letts. 388, 223 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.02.095
14.
14. J. G. Bednorz and K. A. Muller, Chem. Phys. Letts. 52, 2289 (1984).
15.
15. N. Balachandran and N. G. Eror, J. Solid State Chem. 39, 351 (1981).
http://dx.doi.org/10.1016/0022-4596(81)90270-X
16.
16. K. H. Kim, K. H. Yoon, and J. S. Choi, J. Phys. Chem. Solids. 46, 1061 (1985).
http://dx.doi.org/10.1016/0022-3697(85)90020-4
17.
17. N. Bickel, G. Schmidt, K. Heinz, and K. Müller, Phys. Rev. Lett. 62, 2009 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2009
18.
18. W. Maus-Friedrichs, M. Frerichs, A. Gunhold, S. Krischok, V. Kempter, and G. Bihlmayer, Surf. Sci. 515, 419 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01968-4
19.
19. G. Charlton, S. Brennan, C. A. Muryn, R. McGrath, D. Norman, T. S. Turner, and G. Thorthon, Surf. Sci. 457, L376 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00403-9
20.
20. A. Ikeda, T. Nishimura, T. Morishita, and Y. Kido, Surf. Sci. 433, 520 (1999).
http://dx.doi.org/10.1016/S0039-6028(99)00050-3
21.
21. R. Reihl, J. G. Bednorz, K. A. Müller, Y. Jugnet, G. Landgren, and J. F. Morar, Phys. Rev. B 30, 803 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.803
22.
22. P. Pertosa and F. M. Michel-Calendini, Phys. Rev. B 17, 2011 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.2011
23.
23. N. B. Brookes, D. S. L. Law, D. R. Warburton, and G. Thornton, Solid State Comm. 57, 473 (1986).
http://dx.doi.org/10.1016/0038-1098(86)90611-3
24.
24. J. Padilla and D. Vanderbilt, Phys. Rev. B 56, 1625 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.1625
25.
25. J. Padilla and D. Vanderbilt, Surf. Sci. 418, 64 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00670-0
26.
26. C. Cheng, K. Kunc, and M. H. Lee, Phys. Rev. B 62, 10409 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10409
27.
27. S. Tinte and M. D. Stachiotti, AIP, Conf. Proc. 535, 273 (2000).
http://dx.doi.org/10.1063/1.1324464
28.
28. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
29.
29. V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.7570
30.
30. V. I. Anisimov, F. Aryasetiawan, and A. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).
http://dx.doi.org/10.1088/0953-8984/9/4/002
31.
31. G. K. H. Madsen and P. Novák, Europhys. Lett. 69, 777 (2005).
http://dx.doi.org/10.1209/epl/i2004-10416-x
32.
32. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
33.
33. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
http://dx.doi.org/10.1063/1.2204597
34.
34. J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
http://dx.doi.org/10.1063/1.1760074
35.
35. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, 121201 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121201
36.
36. T. M. Henderson, J. Paier, and G. E. Scuseria, Phys. Status Solidi B. 248, 767 (20011).
http://dx.doi.org/10.1002/pssb.201046303
37.
37. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
38.
38. B. G. Janesko and G. E. Scuseria, J. Chem. Phys. 128, 084111 (2008).
http://dx.doi.org/10.1063/1.2831556
39.
39. A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, and J. Hafner, Phys. Rev. B 76, 195440 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.195440
40.
40. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Àngyàn, J. Chem. Phys. 124, 154709 (2006).
http://dx.doi.org/10.1063/1.2187006
41.
41. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195134
42.
42. E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.13164
43.
43. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.226401
44.
44. P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. B 50, 7279 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.7279
45.
45. D. J. Singh, Phys. Rev. B. 81, 195217 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195217
46.
46. M. K. Y. Chan and G. Ceder, Phys. Rev. Lett. 105, 196403 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.196403
47.
47. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.13
48.
48. F. Bechstedt, F. Fuchs, and G. Kresse, Phys. Status Solidi B 246, 1877 (2009).
http://dx.doi.org/10.1002/pssb.200945074
49.
49. M. S. Kim and C. H. Park, J. Korean Phys. Soci. 56, 490 (2010).
http://dx.doi.org/10.3938/jkps.56.490
50.
50. H. S. Ahn, D. C. Cuong, J. Lee, and S. Han, J. Korean Phys. Soci. 49, 1536 (2006).
51.
51. G. L. Zhao, D. Bagayoko, and T. D. Williams, Phys. Rev. B 60, 1563 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.1563
52.
52. D. Bagayoko, L. Franklin, and G. L. Zhao, Phys. Rev. B 76, 037101 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.037101
53.
53. E. C. Ekuma, L. Franklin, J. T. Wang, G. L. Zhao, and D. Bagayoko, Can. J. Phys. 89, 319 (2011).
http://dx.doi.org/10.1139/P11-023
54.
54. D. Bagayoko and L. Franklin, J. Appl. Phys. 97, 123708 (2005).
http://dx.doi.org/10.1063/1.1939069
55.
55. ICSD, Inorganic Crystal Structure Database (ICSD), National Institute of Standards and Technology (NIST) Release 2011/1 (NIST, 2011), vol. 1.
56.
56. R. W. J. Wyckoff, Crystal Structure (Wiley, New York, 1963), vol. 1, p. 86, 2nd ed.
57.
57. M. Marques, L. K. Teles, V. Anjos, L. M. R. Scolfaro, and J. R. Leite, Appl. Phys. Lett. 82, 3074 (2003).
http://dx.doi.org/10.1063/1.1570922
58.
58. E. C. Ekuma, Master's thesis, Southern University and A & M College, Baton Rouge, LA, U.S.A. (2010).
59.
59. C. E. Ekuma and D. Bagayoko, Jap. J. Appl. Phys. 50, 101103 (2011).
http://dx.doi.org/10.1143/JJAP.50.101103
60.
60. D. Bagayoko, L. Franklin, and G. L. Zhao, J. Appl. Phys. 96, 4297 (2004).
http://dx.doi.org/10.1063/1.1790064
61.
61. E. C. Ekuma, L. Franklin, J. T. Wang, G. L. Zhao, and D. Bagayoko, Physica B 406, 1477 (2011).
http://dx.doi.org/10.1016/j.physb.2011.01.051
62.
62. H. Jin, G. L. Zhao, and D. Bagayoko, Phys. Rev. B 73, 245214 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.245214
63.
63. G. L. Zhao, D. Bagayoko, and L. Yang, Phys. Rev. B 69, 245416 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245416
64.
64. L. Franklin, C. E. Ekuma, G. L. Zhao, and D. Bagayoko, Manuscript in Preparation.
65.
65. E. C. Ekuma, D. Bagayoko, G. L. Zhao, L. Franklin, and J. T. Wang, Proceedings, 2nd International Seminar on Theoretical Physics and National Development, Abuja, Nigeria. (2011).
66.
66. D. Bagayoko, Proceedings, 1st International Seminar on Theoretical Physics and National Development, Abuja, Nigeria. (2008).
67.
67. H. Jin, G. L. Zhao, and D. Bagayoko, J. Appl. Phys. 101, (2007) 101, 033123 (2007).
http://dx.doi.org/10.1063/1.2435802
68.
68. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1253
69.
69. M. Levy, Phys. Rev. A 26, 1200 (1982).
http://dx.doi.org/10.1103/PhysRevA.26.1200
70.
70. M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979).
http://dx.doi.org/10.1073/pnas.76.12.6062
71.
71. B. N. M. Harmon, W. Weber, and D. R. Hamann, Phys. Rev. B 25, 1109 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.1109
72.
72. J. P. Perdew and Y. Wang, Phys. Rev. B 45, A13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
73.
73. G. Lehmann and M. Taut, Phys. Status, Solidi 54, 469 (1972).
http://dx.doi.org/10.1002/pssb.2220540211
74.
74. R. S. Mulliken, J. Am. Chem. Soc. 23, 1833 (1955).
75.
75. F. Murnaghan, Proc. Nat. Acad. Sci. USA 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
76.
76. Finite Deformation of an Elastic Solid (Dover, New York, 1995).
77.
77. A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fajumori, S. R. Barman, D. D. Maiti, K. Sarma, Y. Tokura, and M. Onoda, Phys. Rev B 53, 1161 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.1161
78.
78. W. Y. Ching, J. Am. Ceram. Soc. 73, 3135 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06430.x
79.
79. A. Kokalj, Comp. Mater. Sci. 28, 155 (2003).
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
80.
80. F. L. Mattheiss, Phys. Rev. B 6, 4718 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4718
81.
81. F. L. Mattheiss, Phys. Rev. B 6, 4740 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4740
82.
82. S. Saha, T. P. Sinha, and A. Mookerjee, J. Phys.: Condens. Matter 12, 3325 (2000).
http://dx.doi.org/10.1088/0953-8984/12/14/309
83.
83. R. Ahuja, O. Eriksson, and B. Johansson, J. Appl. Phys. 90, 1854 (2001).
http://dx.doi.org/10.1063/1.1384862
84.
84. X. G. Guo, X. S. Chen, and W. Lu, Solid State Commun. 126, 441 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00188-1
85.
85. S. Kimura, J. Yamauchi, M. Tsukada, and S. Wantnabe, Phys. Rev. B 51, 11049 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.11049
86.
86. S. D. Mo, W. Y. Ching, M. F. Chisholm, and G. Duscher, Phys. Rev. B 60, 2416 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2416
87.
87. S. Zollner, A. A. Demkov, R. Liu, P. L. Fejes, P. Gregory, R. B. Alluri, J. A. Curless, Z. Yu, J. Ramdani, R. Droopad, T. E. Tiwald, et al., J. Vac. Sci. Technol. B 18, 2242 (2000).
http://dx.doi.org/10.1116/1.1303741
88.
88. F. L. Battye, H. Höchst, and A. Goldman, Solid State Commun. 19, 269 (1976).
http://dx.doi.org/10.1016/0038-1098(76)90866-8
89.
89. R. Board, H. Weaver, and J. Honig (1970), p. 595.
90.
90. F. Bottin, F. Finocchi, and C. Noguera, Phys. Rev. B 68, 035418 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035418
91.
91. S. Piskunov, Y. F. Zhukovskii, E. A. Kotomin, and Y. N. Shunin, Computer Modelling and New Technologies (Transport and Telecommunication Institute, Lomonosov Str.1, Riga, LV-1019, Latvia, 2000), vol. 4, p. 7.
92.
92. K. H. Hellwege and A. M. Hellwege, Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series Group III, Ferroelectrics and Related Substances (Springer Verlag, Berlin, 1969), vol. 3.
93.
93. T. Mitsui and S. E. Nomura, Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Group III, Crystal and Solid State Physics (Springer Verlag, Berlin, 1982), vol. 16.
94.
94. Y. Kuroiwa, S. Aoyagi, A. Sawada, E. Nishibori, M. Takata, M. Sakata, H. Tanaka, and J. Harada, J. Korean Physical Society 42, S1425 (2003).
95.
95. W. Jauch and M. Reehuis, Acta Crystallographica Section A 61, 411 (2005).
http://dx.doi.org/10.1107/S0108767305013231
96.
96. T. Ikeda, T. Kobayashi, M. Takata, T. Takayama, and M. Sakata, Solid State Ionics 108, 151 (1998).
http://dx.doi.org/10.1016/S0167-2738(98)00033-2
97.
97. J. Friis, B. Jiang, J. Spence, K. Marthinsen, and R. Holmestad, Acta Crystallographica Section A 60, 402 (2004).
http://dx.doi.org/10.1107/S010876730401726X
98.
98. Y. A. Abramov, V. G. Tsirelson, V. E. Zavodnik, S. A. Ivanov, and B. I. D., Acta Crystallographica Section B 51, 942 (1995).
http://dx.doi.org/10.1107/S0108768195003752
99.
99. M. I. Cohen and R. F. Blunt, Phys. Rev. 168, 929 (1968).
http://dx.doi.org/10.1103/PhysRev.168.929
100.
100. P. G. Perkins and D. M. Winter, J. Phys. C: Solid state Phys. 16, 3481 (1983).
http://dx.doi.org/10.1088/0022-3719/16/18/018
101.
101. M. Cardona, Phys. Rev. 140, A651 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A651
102.
102. E. Braun, V. Saile, G. Sppussel, and E. E. Kock, Z. Phys. B 29, 179 (1978).
http://dx.doi.org/10.1007/BF01321179
103.
103. K. Van Benthem, C. Elsassser, and R. H. French, J Appl Phys. 90, 6156 (2001).
http://dx.doi.org/10.1063/1.1415766
104.
104. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
105.
105. D. Bagayoko, G. L. Zhao, J. D. Fan, and J. T. Wang, J. Phys.: Condens. Matter 10, 5645 (1998).
http://dx.doi.org/10.1088/0953-8984/10/25/014
106.
106. D. Baurerle, W. Braun, V. Saile, G. Sprussel, and E. E. Koch, Z. Physik B 29, 179 (1978).
http://dx.doi.org/10.1007/BF01321179
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3700433
Loading
/content/aip/journal/adva/2/1/10.1063/1.3700433
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3700433
2012-03-27
2016-10-01

Abstract

We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA) potential and the linear combination of atomic orbitals (LCAO) formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW) method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3700433.html;jsessionid=d4p1SslDAEcHG2Npzgs2uWlp.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3700433&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3700433&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3700433'
Right1,Right2,Right3,