Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3701702
1.
1. U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch, Science 322, 1520 (2008).
http://dx.doi.org/10.1126/science.1165449
2.
2. P. W. Anderson, Phys. Rev. 124, 41 (1961).
http://dx.doi.org/10.1103/PhysRev.124.41
3.
3. J. Kondo, Prog. Theo. Phys. 32, 37 (1964).
http://dx.doi.org/10.1143/PTP.32.37
4.
4. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
http://dx.doi.org/10.1103/RevModPhys.47.773
5.
5. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, England).
6.
6. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2512
7.
7. A. P. Jauho, N. S. Wingreen, and Y. Meir, Phys, Rev. B 50, 5528 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5528
8.
8. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
http://dx.doi.org/10.1126/science.278.5336.252
9.
9. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.395
10.
10. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
http://dx.doi.org/10.1143/PTP.5.544
11.
11. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
http://dx.doi.org/10.1063/1.1704046
12.
12. X. G. Wen, Phys. Rev. B 41, 12838 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.12838
13.
13. R. Egger and A. O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5082
14.
14. C. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 79, 5086 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5086
15.
15. J. von Delft, Annalen der Physik 4, 225 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
16.
16. T. L. Schmidt, P. Werner, L. Mühlbacher, and A. Komnik, Phys. Rev. B 78, 235110 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235110
17.
17. M. Schiro and M. Fabrizio, Phys. Rev. B 79, 153302 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.153302
18.
18. P. Werner, T. Oka, and A. J. Millis, Phys. Rev. B 79, 035320 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035320
19.
19. L. Mühlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.176403
20.
20. T. A. Costi, Phys. Rev. B 55, 3003 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.3003
21.
21. F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.196801
22.
22. F. B. Anders and A. Schiller, Phys. Rev. B 74, 245113 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245113
23.
23. F. B. Anders, Phys. Rev. Lett. 101, 066804 (2008);
http://dx.doi.org/10.1103/PhysRevLett.101.066804
23.F. B. Anders, J. Phys.: Condens. Matter 20, 195216 (2008).
http://dx.doi.org/10.1088/0953-8984/20/19/195216
24.
24. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.147902
25.
25. A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.: Theor. Exp., P04005 (2004).
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
26.
26. S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.076401
27.
27. P. Schmidt and H. Monien, arXiv:cond-mat/0202046.
28.
28. P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.216802
29.
29. A. Schiller and S. Hershfield, Phys. Rev. B 62, R16271 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16271
30.
30. F. Lesage and H. Saleur, Phys. Rev. Lett. 80, 4370 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4370
31.
31. H. Schoeller and J. König, Phys. Rev. Lett. 84, 3686 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3686
32.
32. H. Schoeller, Eur. Phys. J. Special Topics 168, 179 (2009).
http://dx.doi.org/10.1140/epjst/e2009-00962-3
33.
33. C. Karrasch, S. Andergassen, M. Pletyukhov, D. Schuricht, L. Borda, V. Meden, and H. Schoeller, EPL 90, 30003 (2010).
http://dx.doi.org/10.1209/0295-5075/90/30003
34.
34. M. Pletyukhov, D. Schuricht, and H. Schoeller, Phys. Rev. Lett. 104, 106801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.106801
35.
35. S. Kehrein, The Flow Equation Approach to Many-Particle Systems (Springer Verlag, 2006).
36.
36. A. Hackl and S. Kehrein, Phys. Rev. B 78, 092303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.092303
37.
37. A. Hackl and S. Kehrein, J. Phys.: Condens. Matter 21, 015601 (2009).
http://dx.doi.org/10.1088/0953-8984/21/1/015601
38.
38. M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.175702
39.
39. E. Eckstein, A. Hackl, S. Kehrein, M. Kollar, M. Moeckel, P. Werner, and F. A. Wolf, cond-mat/1005.5097.
40.
40. M. Plihal, D. C. Langreth, and P. Nordlander, Phys. Rev. B 71, 165321 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.165321
41.
41. C. D. Spataru, M. S. Hybertsen, S. G. Louie, and A. J. Millis, Phys. Rev. B 79, 155110 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155110
42.
42. The excitation operators defined here satisfy the condition of the invariant eigen-operator in the paper: H. Y. Fan and C. Li, Phys. Lett. A 321, 75 (2004).
http://dx.doi.org/10.1016/j.physleta.2003.11.059
43.
43. M. Moeckel, Diploma thesis, Universität München, 2005.
44.
44. P. Wang and S. Kehrein, Phys. Rev. B 82, 125124 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125124
45.
45. T. Fujii and K. Ueda, Phys. Rev. B 68, 155310 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155310
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3701702
Loading
/content/aip/journal/adva/2/1/10.1063/1.3701702
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3701702
2012-03-29
2016-12-10

Abstract

In this paper we study the time evolution of an observable in the interacting fermion systems driven out of equilibrium. We present a method for solving the Heisenberg equations of motion by constructing excitation operators which are defined as the operators satisfying . It is demonstrated how an excitation operator and its excitation energy λ can be calculated. By an appropriate supposition of the form of we turn the problem into the one of diagonalizing a series of matrices whose dimension depends linearly on the size of the system. We perform this method to calculate the evolution of the creation operator in a toy model Hamiltonian which is inspired by the Hubbard model and the nonequilibrium current through the single impurity Anderson model. This method is beyond the traditional perturbation theory in Keldysh-Green's function formalism, because the excitation energy λ is modified by the interaction and it will appear in the exponent in the function of time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3701702.html;jsessionid=m2OBf4bcGDgLJlsXtlES_FJC.x-aip-live-06?itemId=/content/aip/journal/adva/2/1/10.1063/1.3701702&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3701702&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3701702'
Right1,Right2,Right3,