Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/2/1/10.1063/1.3701709
1.
1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Transactions on Microwave Theory & Techniques 47, 11 (1999).
http://dx.doi.org/10.1109/22.798002
2.
2. J. B. Pendry, Physical Review Letters 85, 18 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
3.
3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Physical Review Letters 84, 18 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.18
4.
4. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Physical Review B 65, 195104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195104
5.
5. B. Popa and S. A. Cummer, Microwave and Optical Technology Letters 49, 10 (2007).
http://dx.doi.org/10.1002/mop.22789
6.
6. D. Huang, E. Poutrina, and D. R. Smith, Applied Physics Letters 96, 104104 (2010).
http://dx.doi.org/10.1063/1.3356223
7.
7. T. H. Hand and S. A. Cummer, Journal of Applied Physics 103, 066105 (2008).
http://dx.doi.org/10.1063/1.2898575
8.
8. D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 5801 (2006).
http://dx.doi.org/10.1126/science.1133628
9.
9. H. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444 (2006).
http://dx.doi.org/10.1038/nature05343
10.
10. Y. Yuan, B. Popa, and S. A. Cummer, Optics Express 17, 18 (2009).
http://dx.doi.org/10.1364/OE.17.016135
11.
11. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, Nature 466 (2010).
http://dx.doi.org/10.1038/nature09278
12.
12. F. P. Casares-Miranda, C. Camacho-Peñalosa, and C. Caloz, IEEE Transactions on Antennas and Propagation 45, 8 (2006).
13.
13. A. K. Popov and V. M. Shalaev, Optics Letters 31, 14 (2006).
http://dx.doi.org/10.1364/OL.31.002169
14.
14. S. A. Ramakrishna and J. B. Pendry, Physical Review B 67, 201101 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.201101
15.
15. T. Jiang, K. Chang, L. Si, L. Ran, and H. Xin, Physical Review Letters 107, 205503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.205503
16.
16. A. B. Kozyrev, H. Kim, and D. W. van der Weide, Applied Physics Letters 88, 264101 (2006).
http://dx.doi.org/10.1063/1.2214136
17.
17. E. A. Ruehli, IBM Journal Research and Development 16, 5 (1972).
http://dx.doi.org/10.1147/rd.165.0470
18.
18. Avago Technologies MGA-86563 - 0.5–6 GHz Low Noise GaAs MMIC Amplifier Datasheet, Web link: http://www.avagotech.com/docs/AV02-2514EN, Publication number: AV02-2514EN.
19.
19. Advanced Circuits: http://www.4pcb.com.
20.
20. CoventorWare® is a resistered trademark of Coventor, Inc.: http://www.coventor.com/coventorware.html.
http://aip.metastore.ingenta.com/content/aip/journal/adva/2/1/10.1063/1.3701709
Loading
/content/aip/journal/adva/2/1/10.1063/1.3701709
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/2/1/10.1063/1.3701709
2012-03-29
2016-12-07

Abstract

Measurements of a meta-atom integrated with a low noise amplifier into the split-ring resonator are presented. A comparison is made between baseline meta-atoms and one integrated with a GaAs low noise amplifier. S-parameter measurements in a RF strip-line show the resonant frequency location. The resonance null is more prominent for the integrated meta-atom. Biasing the low noise amplifier from 0 to 7 VDC showed that the resonant null improved with biasing voltage. As the biasing voltage increases, the transmission null reduced from -11.82 to -23.21 dB for biases from 0 to 7 VDC at resonant frequency.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/2/1/1.3701709.html;jsessionid=9ccF8rbXxPWZbHXsYUuX-HrN.x-aip-live-03?itemId=/content/aip/journal/adva/2/1/10.1063/1.3701709&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/2/1/10.1063/1.3701709&pageURL=http://scitation.aip.org/content/aip/journal/adva/2/1/10.1063/1.3701709'
Right1,Right2,Right3,